A111276 Number of chiral non-crossing partition patterns of n points on a circle, divided by 2.
0, 0, 0, 0, 0, 4, 14, 60, 210, 728, 2442, 8252, 27716, 93924, 319964, 1098900, 3800928, 13244836, 46460738, 164015272, 582353976, 2078812492, 7457141650, 26871707908, 97236327900, 353213328024, 1287648322950, 4709765510884, 17279999438748, 63583033400968
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- D. Callan and L. Smiley, Non-crossing Partitions under Rotation and Reflection, arXiv:math/0510447 [math.CO], 2005.
- L. Smiley, a(5) = 0
- L. Smiley, a(6)=8/2=4
Programs
-
Mathematica
a[n_] := If[n < 6, 0, ((Binomial[2n, n]/(n+1) + DivisorSum[n, Binomial[2#, #] EulerPhi[n/#] Boole[# < n]&])/n - Binomial[n, Floor[n/2]])/2]; Array[a, 22] (* Jean-François Alcover, Feb 17 2019 *)
-
PARI
a(n) = (sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1) - binomial(n,n\2))/2 \\ Andrew Howroyd, Nov 19 2024
Extensions
a(23) onwards from Andrew Howroyd, Nov 19 2024
Comments