A111285 Number of permutations avoiding the patterns {2431, 3421, 4231, 4321, 24513, 42513, 34512, 43512}; number of strong sorting class based on 2431.
1, 1, 2, 6, 20, 66, 216, 706, 2308, 7546, 24672, 80666, 263740, 862306, 2819336, 9217906, 30138228, 98537866, 322172592, 1053353226, 3443970860, 11260168946, 36815469656, 120369313506, 393551182948, 1286727730586, 4206996000512
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb., Vol. 12 (2005), R31.
- Index entries for linear recurrences with constant coefficients, signature (4,-3,2).
Programs
-
Magma
I:=[1, 2, 6]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)+2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 27 2012
-
Mathematica
a[1] = 1; a[2] = 2; a[3] = 6; a[n_] := a[n] = 4a[n - 1] - 3a[n - 2] + 2a[n - 3]; Table[a[n], {n, 26}] (* Robert G. Wilson v *) CoefficientList[Series[(1-2*x+x^2)/(1-4*x+3*x^2-2*x^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,-3,2},{1,2,6},40] (* Vincenzo Librandi, Jun 27 2012 *)
Formula
a(n) = 4*a(n-1) - 3*a(n-2) + 2*a(n-3), n>=4.
G.f.: 1+x*(1-x)^2/(1-4*x+3*x^2-2*x^3).
Extensions
a(0)=1 prepended by Alois P. Heinz, Mar 12 2024