A111286 Number of permutations avoiding the patterns {1342, 1432, 2341, 2431, 3142, 3241, 3412, 3421, 4132, 4231, 4312, 4321}; number of strong sorting class based on 1342.
1, 1, 2, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb., Vol. 12 (2005), R31.
- Index entries for linear recurrences with constant coefficients, signature (2).
Programs
-
Mathematica
Table[If[n == 1, 1, If[n == 2, 2, 3*2^(n - 2)]], {n, 32}] (* Robert G. Wilson v *) LinearRecurrence[{2},{1,2,6},40] (* Harvey P. Dale, Jul 14 2019 *)
Formula
a(n) = 3*2^(n-2), n>=3.
a(n) = 2*a(n-1) for n=3. G.f.: (1-x+2*x^3)/(1-2*x). - Colin Barker, Nov 29 2012
Extensions
a(0)=1 prepended by Alois P. Heinz, Mar 12 2024