A111354 Numbers n such that the numerator of Sum_{i=1..n} (1/i^2), in reduced form, is prime.
2, 7, 13, 19, 121, 188, 252, 368, 605, 745, 1085, 1127, 1406, 1743, 1774, 2042, 2087, 2936, 3196, 3207, 3457, 4045, 7584, 10307, 12603, 12632, 14438, 14526, 14641, 15662, 15950, 16261, 18084, 18937, 19676, 40984, 45531, 46009, 48292, 48590
Offset: 1
Keywords
Examples
A007406(n) begins {1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141,...}. Thus a(1) = 2 because A007406(2) = 5 is prime but A007406(1) = 1 is not prime. a(2) = 7 because A007406(7) = 266681 is prime but all A007406(k) are composite for 2 < k < 7.
Links
- Carlos M. da Fonseca, M. Lawrence Glasser, Victor Kowalenko, Generalized cosecant numbers and trigonometric inverse power sums, Applicable Analysis and Discrete Mathematics, Vol. 12, No. 1 (2018), 70-109.
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem
- Eric Weisstein's World of Mathematics, Harmonic Number.
- Eric Weisstein's World of Mathematics, Wolstenholme Number
Crossrefs
Programs
-
Mathematica
s = 0; Do[s += 1/n^2; If[PrimeQ[Numerator[s]], Print[n]], {n, 1, 10^4}] Module[{nn=10400,t},t=Accumulate[1/Range[nn]^2];Select[Thread[{Range[nn],Numerator[t]}],PrimeQ[#[[2]]]&]][[;;,1]] (* The program generates the first 24 terms of the sequence. *) (* Harvey P. Dale, May 18 2025 *)
Extensions
12 more terms from T. D. Noe, Nov 11 2005
More terms from T. D. Noe, Mar 08 2006
Additional comments from Alexander Adamchuk, Oct 11 2006
Edited by N. J. A. Sloane, Nov 11 2006
Comments