A111431 a(n) = Fibonacci(tribonacci(n)).
0, 0, 1, 1, 1, 3, 13, 233, 46368, 701408733, 37889062373143906, 6161314747715278029583501626149, 818706854228831001753880637535093596811413714795418360007
Offset: 0
Examples
a(0) = Fibonacci(tribonacci(0)) = A000045(A000073(0)) = A000045(0) = 0. a(1) = Fibonacci(tribonacci(1)) = A000045(A000073(1)) = A000045(0) = 0. a(2) = Fibonacci(tribonacci(2)) = A000045(A000073(2)) = A000045(1) = 1. a(3) = Fibonacci(tribonacci(3)) = A000045(A000073(3)) = A000045(1) = 1. a(4) = Fibonacci(tribonacci(4)) = A000045(A000073(4)) = A000045(2) = 1. a(5) = Fibonacci(tribonacci(5)) = A000045(A000073(5)) = A000045(4) = 3. a(6) = Fibonacci(tribonacci(6)) = A000045(A000073(6)) = A000045(7) = 13. a(7) = Fibonacci(tribonacci(7)) = A000045(A000073(7)) = A000045(13) = 233. a(8) = A000045(A000073(8)) = A000045(24) = 46368. a(9) = A000045(A000073(9)) = A000045(44) = 701408733. a(10) = A000045(A000073(10)) = A000045(81) = 37889062373143906.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..16
Programs
-
Maple
a:= n-> (<<0|1>, <1|1>>^((<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3]))[1, 2]: seq(a(n), n=0..13); # Alois P. Heinz, Aug 09 2018
-
Mathematica
Fibonacci/@LinearRecurrence[{1,1,1},{0,0,1},15] (* Harvey P. Dale, Jan 04 2013 *)