A111490 a(n) = n + Sum_{k=1..n} (n mod k). Row sums of A372727.
0, 1, 2, 4, 5, 9, 9, 15, 16, 21, 23, 33, 29, 41, 45, 51, 52, 68, 65, 83, 81, 91, 99, 121, 109, 128, 138, 152, 152, 180, 168, 198, 199, 217, 231, 253, 234, 270, 286, 308, 298, 338, 326, 368, 372, 384, 404, 450, 422, 463, 470, 500, 506, 558, 546, 584, 576, 610, 636
Offset: 0
Examples
If the mod operation is defined according CMath, and n = 11, then the list [n mod k : k = 0..n] = [11, 0, 1, 2, 3, 1, 5, 4, 3, 2, 1, 0], and the total of this list is a(11) = 33.
References
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994, 34th printing 2022.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Partial sums of A033879. - Gionata Neri, Sep 10 2015
Programs
-
Maple
A111490:=n->add(n mod i, i=1..n+1): seq(A111490(n), n=0..100); # Wesley Ivan Hurt, Dec 05 2014 seq(n + add(irem(n, k), k = 2..n-1), n = 0..58); # Peter Luschny, Jul 19 2024
-
Mathematica
t = Table[Flatten@Table[Range@n, {m, Ceiling[99/n]}], {n, 99}]; f[n_] := Sum[ t[[i, n - i + 1]], {i, n}]; Array[f, 58] (* Robert G. Wilson v, Nov 22 2005 *) (* to view table *) Table[Flatten@Table[Range@n, {m, Ceiling[40/n]}], {n, 10}] // TableForm
-
PARI
vector(100, n, n + sum(k=2, n, n % k)) \\ Altug Alkan, Oct 12 2015
-
PARI
a(n) = sum(k=1, n, 2*k-sigma(k)); \\ Michel Marcus, Oct 11 2015
-
Python
from math import isqrt def A111490(n): return n*(n+1)+((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Nov 01 2023
-
Python
def a(n): return sum(n % k if k else n for k in range(n)) print([a(n) for n in range(59)]) # Peter Luschny, Jul 19 2024
-
SageMath
def a(n): return sum(n.mod(k) for k in range(n)) print([a(n) for n in srange(59)]) # Peter Luschny, Jul 19 2024
Formula
a(n) = n + A004125(n). - Juri-Stepan Gerasimov, Aug 30 2009
a(n) = Sum_{i=1..n+1} (n mod i). - Wesley Ivan Hurt, Dec 05 2014
G.f.: 2*x/(1-x)^3 - (1-x)^(-1)*Sum_{k>=1} k*x^k/(1-x^k). - Robert Israel, Oct 11 2015
a(n) = (1 - Pi^2/12) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 04 2023
Extensions
Edited and extended by Robert G. Wilson v, Nov 22 2005
Prepending a(0) = 0 and new name using a formula of Juri-Stepan Gerasimov by Peter Luschny, Jul 19 2024
Comments