cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111528 Square table, read by antidiagonals, where the g.f. for row n+1 is generated by: x*R_{n+1}(x) = (1+n*x - 1/R_n(x))/(n+1) with R_0(x) = Sum_{n>=0} n!*x^n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 24, 1, 1, 5, 22, 71, 120, 1, 1, 6, 33, 148, 461, 720, 1, 1, 7, 46, 261, 1156, 3447, 5040, 1, 1, 8, 61, 416, 2361, 10192, 29093, 40320, 1, 1, 9, 78, 619, 4256, 23805, 99688, 273343, 362880, 1, 1, 10, 97, 876, 7045, 48096, 263313
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Examples

			Table begins:
  1, 1,  2,   6,   24,   120,    720,    5040,     40320, ...
  1, 1,  3,  13,   71,   461,   3447,   29093,    273343, ...
  1, 1,  4,  22,  148,  1156,  10192,   99688,   1069168, ...
  1, 1,  5,  33,  261,  2361,  23805,  263313,   3161781, ...
  1, 1,  6,  46,  416,  4256,  48096,  591536,   7840576, ...
  1, 1,  7,  61,  619,  7045,  87955, 1187845,  17192275, ...
  1, 1,  8,  78,  876, 10956, 149472, 2195208,  34398288, ...
  1, 1,  9,  97, 1193, 16241, 240057, 3804353,  64092553, ...
  1, 1, 10, 118, 1576, 23176, 368560, 6262768, 112784896, ...
Rows are generated by logarithms of factorial series:
log(1 + x + 2*x^2 + 6*x^3 + 24*x^4 + ... n!*x^n + ...) = x + (3/2)*x^2 + (13/3)*x^3 + (71/4)*x^4 + (461/5)*x^5 + ...
(1/2)*log(1 + 2*x + 6*x^2 + ... + ((n+1)!/1!)*x^n + ...) = x + (4/2)*x^2 + (22/3)*x^3 + (148/4)*x^4 + (1156/5)*x^5 + ...
(1/3)*log(1 + 3*x + 12*x^2 + 60*x^3 + ... + ((n+2)!/2!)*x^n + ...) = x + (5/2)*x^2 + (33/3)*x^3 + (261/4)*x^4 + (2361/5)*x^5 +...
G.f. of row n may be expressed by the continued fraction:
R_n(x) = 1/(1+n*x - (n+1)*x/(1+(n+1)*x - (n+2)*x/(1+(n+2)*x -...
or recursively by: R_n(x) = 1/(1+n*x - (n+1)*x*R_{n+1}(x)).
		

Crossrefs

Cf: A003319 (row 1), A111529 (row 2), A111530 (row 3), A111531 (row 4), A111532 (row 5), A111533 (row 6), A111534 (diagonal).
Similar recurrences: A124758, A243499, A284005, A329369, A341392.

Programs

  • Maple
    T := (n, k) -> coeff(series(hypergeom([n+1, 1], [], x)/hypergeom([n, 1], [], x), x, 21), x, k):
    #display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # Peter Bala, Jul 16 2022
  • Mathematica
    T[n_, k_] := T[n, k] = Which[n < 0 || k < 0, 0, k == 0 || k == 1, 1, n == 0, k!, True, (T[n - 1, k + 1] - T[n - 1, k])/n - Sum[T[n, j]*T[n - 1, k - j], {j, 1, k - 1}]]; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2018 *)
  • PARI
    {T(n,k)=if(n<0||k<0,0,if(k==0||k==1,1,if(n==0,k!, (T(n-1,k+1)-T(n-1,k))/n-sum(j=1,k-1,T(n,j)*T(n-1,k-j)))))}
    for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))
    
  • PARI
    {T(n,k)=if(n<0||k<0,0,if(k==0,1,if(n==0,k!, k/n*polcoeff(log(sum(m=0,k,(n-1+m)!/(n-1)!*x^m)),k))))}
    for(n=0,10,for(k=0,10,print1(T(n,k),", ")); print(""))

Formula

T(n, 0) = 1, T(0, k) = k!, otherwise for n>=1 and k>=1:
T(n, k) = (T(n-1, k+1) - T(n-1, k))/n - Sum_{j=1..k-1} T(n, j)*T(n-1, k-j).
T(n, k) = (k/n)*[x^k] log(Sum_{m=0..k} (n-1+m)!/(n-1)!*x^m).
T(n, k) = Sum_{j = 0..k} A089949(k, j)*n^(k-j). - Philippe Deléham, Aug 08 2005
R_n(x) = -((n-1)!/n)/Sum_{i>=1} (i+n-2)!*x^i, n > 0. - Vladeta Jovovic, May 06 2006
G.f. of row R may be expressed by the continued fraction: W(0), where W(k) = 1 - x*(k+1)/( x*(k+1) - 1/(1 - x*(k+1+R)/( x*(k+1+R) - 1/W(k+1) ))). - Sergei N. Gladkovskii, Aug 26 2013
Conjecture: T(n, k) = b(2^(k-1) - 1, n) for k > 0 with T(n, 0) = 1 where b(n, m) = b(floor(n/2), m) + b(floor((2n - 2^A007814(n))/2), m) + m*b(A025480(n-1), m) for n > 0 with b(0, m) = 1. - Mikhail Kurkov, Dec 16 2021
From Peter Bala, Jul 11 2022: (Start)
O.g.f. for row n, n >= 1: R(n,x) = ( Sum_{k >= 0} (n+k)!/n!*x^k )/( Sum_{k >= 0} (n-1+k)!/(n-1)!*x^k ).
R(n,x)/(1 - n*x*R(n,x)) = Sum_{k >= 0} (n+k)!/n!*x^k.
For n >= 0, R(n,x) satisfies the Riccati equation x^2*d/dx(R(n,x)) + n*x*R(n,x)^2 - (1 + (n-1)*x)*R(n,x) + 1 = 0 with R(n,0) = 1.
Apply Stokes 1982 to find that for n >= 0, R(n,x) = 1/(1 - x/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 3*x/(1 - (n+3)*x/(1 - 4*x/(1 - (n+4)*x/(1 - ...))))))))), a continued fraction of Stieltjes type. (End)