cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111567 Binomial transform of A048654: generalized Pellian with second term equal to 4.

Original entry on oeis.org

1, 5, 18, 62, 212, 724, 2472, 8440, 28816, 98384, 335904, 1146848, 3915584, 13368640, 45643392, 155836288, 532058368, 1816560896, 6202126848, 21175385600, 72297288704, 246838383616, 842758957056, 2877359060992
Offset: 0

Views

Author

Creighton Dement, Aug 06 2005

Keywords

Comments

Dropping the leading 1, this becomes the 4th row of the 2-shuffle Phi_2(W(sqrt(2))) of the Fraenkel-Kimberling publication. - R. J. Mathar, Aug 17 2009
Floretion Algebra Multiplication Program, FAMP Code: 1lesseq[K*J] with K = + .5'i + .5'j + .5k' + .5'kk' and J = + .5i' + .5j' + 2'kk' + .5'ki' + .5'kj'.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-2},{1,5},30] (* Harvey P. Dale, Jul 01 2016 *)
  • Maxima
    a[0]:1$
    a[1]:5$
    a[n]:=4*a[n-1]-2*a[n-2]$
    A111567(n):=a[n]$
    makelist(A111567(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Formula

a(n) = 4*a(n-1) - 2*a(n-2), a(0) = 1, a(1) = 5. Program "FAMP" returns: A111566(n) = A007052(n) - A006012(n) + a(n).
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: (1+x)/(1-4*x+2*x^2).
a(n) = A007070(n) + A007070(n-1). (End)
a(n) = ((2+sqrt(18))*(2+sqrt(2))^n + (2-sqrt(18))*(2-sqrt(2))^n)/4, offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
a(n) = ((5+sqrt(32))(2+sqrt(2))^n+(5-sqrt(32))(2-sqrt(2))^n)/2 offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009

Extensions

Typo in definition corrected by Klaus Brockhaus, Aug 09 2009