A111567 Binomial transform of A048654: generalized Pellian with second term equal to 4.
1, 5, 18, 62, 212, 724, 2472, 8440, 28816, 98384, 335904, 1146848, 3915584, 13368640, 45643392, 155836288, 532058368, 1816560896, 6202126848, 21175385600, 72297288704, 246838383616, 842758957056, 2877359060992
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- A. S. Fraenkel and Clark Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discr. Math. 126 (1-3) (1994) 137-149. [From _R. J. Mathar_, Aug 17 2009]
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
Programs
-
Mathematica
LinearRecurrence[{4,-2},{1,5},30] (* Harvey P. Dale, Jul 01 2016 *)
-
Maxima
a[0]:1$ a[1]:5$ a[n]:=4*a[n-1]-2*a[n-2]$ A111567(n):=a[n]$ makelist(A111567(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
Formula
a(n) = 4*a(n-1) - 2*a(n-2), a(0) = 1, a(1) = 5. Program "FAMP" returns: A111566(n) = A007052(n) - A006012(n) + a(n).
From R. J. Mathar, Apr 02 2008: (Start)
O.g.f.: (1+x)/(1-4*x+2*x^2).
a(n) = ((2+sqrt(18))*(2+sqrt(2))^n + (2-sqrt(18))*(2-sqrt(2))^n)/4, offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
a(n) = ((5+sqrt(32))(2+sqrt(2))^n+(5-sqrt(32))(2-sqrt(2))^n)/2 offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
Extensions
Typo in definition corrected by Klaus Brockhaus, Aug 09 2009
Comments