cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A111647 a(n) = A001541(n)*A001653(n+1)*A002315(n).

Original entry on oeis.org

1, 105, 20213, 3998709, 791704585, 156753394977, 31036379835581, 6145046450172525, 1216688160731724433, 240898110778299543129, 47696609245941810082565, 9443687732585695622131557
Offset: 0

Views

Author

Charlie Marion, Aug 24 2005

Keywords

Examples

			a(1) = 105 = 3*5*7.
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)))); // G. C. Greubel, Jul 15 2018
  • Mathematica
    CoefficientList[Series[(1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)), {x, 0, 30}], x] (* G. C. Greubel, Jul 15 2018 *)
  • PARI
    x='x+O('x^30); Vec((1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1))) \\ G. C. Greubel, Jul 15 2018
    

Formula

2*a(n) = A001109(3*n+1) + A001109(n+1).
a(n) = sqrt(A011900(2*n)*A046090(2*n)*A001109(2*n+1)).
a(n) = A001541(3*n) + 2*A001109(n)*A001541(n-1)*A001541(n).
For n>0, a(n) = A001652(3*n) - A053141(2*n)*A002315(n-1) - A001652(n-1).
G.f.: (1+3*x^3-17*x^2-99*x)/((x^2-6*x+1)*(x^2-198*x+1)). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
2*a(n) = A001109(n+1) + A097731(n) + 6*A097731(n-1). - R. J. Mathar, Jan 31 2024

A111648 a(n) = A001541(n)^2 + A001653(n+1)^2 + A002315(n)^2.

Original entry on oeis.org

3, 83, 2811, 95483, 3243603, 110187011, 3743114763, 127155714923, 4319551192611, 146737584833843, 4984758333158043, 169335045742539611, 5752406796913188723, 195412496049305876963
Offset: 0

Views

Author

Charlie Marion, Aug 24 2005

Keywords

Examples

			a(1) = 83 = 3^2+5^2+7^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35, -35, 1}, {3, 83, 2811}, 20] (* Paolo Xausa, Feb 06 2024 *)

Formula

a(n) = A038761(n)^2 + 2, e.g., 95483 = 309^2 + 2.
a(n) = A001652(2*n+1) - A001109(n+1)^2 - Sum_{k=1..n-1} A038723(2*n), e.g., 95483 = 137903 - 204^2 - (23 + 781).
For n > 0, 2*a(n) + A001652(2*n-1) = A001653(2*n+2), e.g., 2*2811 + 119 = 5741.
G.f.: -(11*x^2-22*x+3) / ((x-1)*(x^2-34*x+1)). - Colin Barker, Dec 14 2014 (Empirical g.f. confirmed for more terms and recurrence of source sequences. - Ray Chandler, Feb 05 2024)
Showing 1-2 of 2 results.