cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111651 n appears 3n times.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
Offset: 1

Views

Author

Jonathan Vos Post, Aug 12 2005

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Crossrefs

Programs

  • Mathematica
    Table[PadRight[{},3n,n],{n,10}]//Flatten (* Harvey P. Dale, Sep 15 2021 *)
  • PARI
    {a(n)=if(n<1, 0, polcoeff( x/(1-x)*prod(k=1, n\3, (1-x^(3*k))^(-1)^k, 1+O(x^n)), n))} /* Michael Somos, Aug 31 2006 */
    
  • PARI
    a(n) = sqrtint(24*n) \/ 6; \\ Kevin Ryde, Aug 31 2024
    
  • Python
    from math import isqrt
    def A111651(n): return isqrt((n<<3)//3)+1>>1 # Chai Wah Wu, Oct 05 2024

Formula

Expansion of (q/(1-q))psi(q^3) in powers of q where psi() is a Ramanujan theta function. - Michael Somos, Aug 31 2006
G.f.: x/(1-x)*Product_{k>0} (1-x^(3k))^((-1)^k).
a(n) = round(sqrt((2/3)*n)) = A002024(ceiling(n/3)). - Kevin Ryde, Aug 31 2024