A111723 Number of partitions of an n-set with an odd number of blocks of size 1.
1, 0, 4, 4, 31, 86, 449, 1968, 10420, 56582, 333235, 2069772, 13606113, 94065232, 682242552, 5175100432, 40954340995, 337362555010, 2886922399649, 25616738519384, 235313456176512, 2234350827008170, 21899832049913999, 221292603495494488, 2302631998398438321
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..576
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j, `if`(j=1, 1-t, t))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 0): seq(a(n), n=1..30); # Alois P. Heinz, May 10 2016
-
Mathematica
Rest[ Range[0, 23]! CoefficientList[ Series[ Sinh[x]Exp[Exp[x] - 1 - x], {x, 0, 23}], x]] (* Robert G. Wilson v *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def b(n, t): return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1) for j in range(1, n + 1)) def a(n): return b(n, 0) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 10 2017
Formula
E.g.f.: sinh(x)*exp(exp(x)-1-x).
More generally, e.g.f. for number of partitions of an n-set with an odd number of blocks of size k is sinh(x^k/k!)*exp(exp(x)-1-x^k/k!).
Extensions
More terms from Robert G. Wilson v, Nov 22 2005