A111724 Number of partitions of an n-set with an even number of blocks of size 1.
0, 2, 1, 11, 21, 117, 428, 2172, 10727, 59393, 345335, 2143825, 14038324, 96834090, 700715993, 5305041715, 41910528809, 344714251149, 2945819805408, 26107419715988, 239556359980239, 2272364911439153, 22252173805170347, 224666265799310801, 2335958333831561032
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..576
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j, `if`(j=1, 1-t, t))*binomial(n-1, j-1), j=1..n)) end: a:= n-> b(n, 1): seq(a(n), n=1..30); # Alois P. Heinz, May 10 2016
-
Mathematica
Rest[ Range[0, 24]! CoefficientList[ Series[ Cosh[x]Exp[Exp[x] - 1 - x], {x, 0, 23}], x]] (* Robert G. Wilson v *)
-
Python
from sympy.core.cache import cacheit from sympy import binomial @cacheit def b(n, t): return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1) for j in range(1, n + 1)) def a(n): return b(n, 1) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 10 2017
Formula
E.g.f.: cosh(x)*exp(exp(x)-1-x).
More generally, e.g.f. for number of partitions of an n-set with an even number of blocks of size k is cosh(x^k/k!)*exp(exp(x)-1-x^k/k!).
Extensions
More terms from Robert G. Wilson v, Nov 22 2005
Comments