cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A130263 Number of degree-n permutations such that number of cycles of size k is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 1, 6, 14, 85, 529, 3451, 26816, 243909, 2507333, 26196841, 323194816, 4086482335, 57669014597, 864137455455, 13792308331616, 231648908415001, 4211676768746569, 79205041816808905, 1584565388341689032, 33265011234209710011, 730971789582886971689
Offset: 0

Views

Author

Vladeta Jovovic, Aug 06 2007

Keywords

Examples

			a(2)=1 because we have (12) ((1)(2) does not qualify). a(4)=14 because the following 10 permutations of 4 do not qualify: (1)(2)(3)(4), (14)(2)(3), (1)(24)(3), (1)(2)(34), (13)(2)(4), (13)(24), (1)(23)(4), (14)(23), (12)(3)(4) and (12)(34).
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< x | (&*[1 + Sinh(x^j/j): j in [1..m+1]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Mar 18 2023
    
  • Maple
    g:=product(1+sinh(x^k/k),k=1..40): gser:=series(g,x=0,25): seq(factorial(n)*coeff(gser,x,n),n=0..21); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0 or irem(j, 2)=1, multinomial(n, n-i*j, i$j)
           *(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    nn = 25; Range[0, nn]!*CoefficientList[Series[Product[1 + Sinh[x^k/k], {k, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 20 2016 *)
  • SageMath
    m=40
    def f(x): return product( 1 + sinh(x^j/j) for j in range(1,m+2) )
    def A130263_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A130263_list(m) # G. C. Greubel, Mar 18 2023

Formula

E.g.f.: Product_{k>0} (1+sinh(x^k/k)).
a(n) ~ c * n!, where c = A270614 = Product_{k>=1} ((1 + sinh(1/k)) / exp(1/k)) = 0.625635801977949844... . - Vaclav Kotesovec, Mar 20 2016

Extensions

More terms from Emeric Deutsch, Aug 24 2007

A102759 Number of partitions of n-set in which number of blocks of size 2k is even (or zero) for every k.

Original entry on oeis.org

1, 1, 1, 2, 8, 27, 82, 338, 1647, 7668, 37779, 210520, 1276662, 7985200, 51302500, 358798144, 2677814900, 20309850311, 160547934756, 1344197852830, 11666610870142, 104156661915427, 962681713955130, 9238216839975106, 91508384728188792, 930538977116673878
Offset: 0

Views

Author

Vladeta Jovovic, Feb 10 2005, Aug 05 2007

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(`if`(irem(i, 2)=1 or irem(j, 2)=0, multinomial(
           n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[i, 2] == 1 || Mod[j, 2] == 0, multinomial[n, Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]] ; a[n_] := b[n, n]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *)
  • PARI
    N=31; x='x+O('x^N);
    Vec(serlaplace(exp(sinh(x))*prod(k=1,N,cosh(x^(2*k)/(2*k)!))))
    /* gives: [1, 1, 1, 2, 8, 27, 82, 338, 1647, 7668, ...] , Joerg Arndt, Jan 03 2011 */

Formula

E.g.f. for offset 2: exp(sinh(x))*Product_{k>=1} cosh(x^(2*k)/(2*k)!). - Geoffrey Critzer, Jan 02 2011

Extensions

Offset changed to 0 and two 1's prepended by Alois P. Heinz, Mar 08 2015

A130268 Number of degree-2n permutations such that number of cycles of size k is even (or zero) for every k.

Original entry on oeis.org

1, 1, 4, 86, 2696, 168232, 15948032, 2172623168, 398846422144, 97541017510784, 29909993927387648, 11447388459863715328, 5284740632299379566592, 2927671399386587378671616, 1897593132067741963020476416, 1437515129453860805943287939072
Offset: 0

Views

Author

Vladeta Jovovic, Aug 06 2007

Keywords

Examples

			a(2)=4 because we have (1)(2)(3)(4), (12)(34), (13)(24) and (14)(23).
		

Crossrefs

Programs

  • Maple
    g:=product(cosh(x^k/k),k=1..30): gser:=series(g,x=0,30): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..13); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0 or irem(j, 2)=0, multinomial(n, n-i*j, i$j)
           *(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    nn=26;Select[Range[0,nn]!CoefficientList[Series[Product[Cosh[x^k/k],{k,1,nn}],{x,0,nn}],x],#>0&] (* Geoffrey Critzer, Sep 17 2013 *)

Formula

E.g.f.: Product_{k>0} cosh(x^k/k).
a(n) ~ c * (2*n-1)! / n ~ c * sqrt(Pi) * n^(2*n-3/2) * 2^(2*n) / exp(2*n), where c = A249673 = Product_{k>=1} cosh(1/k) = 2.1164655365... . - Vaclav Kotesovec, Mar 19 2016

Extensions

More terms from Emeric Deutsch, Aug 24 2007

A130275 Number of degree-n permutations such that number of cycles of size 2k is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 2, 6, 21, 105, 675, 4725, 35805, 322245, 3236625, 35602875, 425872755, 5536345815, 77347084815, 1160206272225, 18403556596425, 312860462139225, 5643104418376425, 107218983949152075, 2136610763952639975, 44868826043005439475, 986129980012277775675
Offset: 0

Views

Author

Vladeta Jovovic, Aug 06 2007

Keywords

Examples

			a(4)=21 because only the following three degree-4 permutations do not qualify: (12)(34), (13)(24) and (14)(23).
		

Crossrefs

Programs

  • Maple
    g:=sqrt((1+x)/(1-x))*(product(1+sinh(x^(2*k)/(2*k)),k=1..30)): gser:=series(g, x=0,25): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=1 or irem(j, 2)=1, multinomial(n,
           n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i &, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

E.g.f.: sqrt((1+x)/(1-x))*Product_{k>0} (1+sinh(x^(2*k)/(2*k))).

Extensions

More terms from Emeric Deutsch, Aug 24 2007

A130276 Number of degree-2n permutations such that number of cycles of size 2k-1 is even (or zero) for every k.

Original entry on oeis.org

1, 2, 16, 416, 20224, 1645312, 196388864, 33279311872, 7427338829824, 2151276556845056, 771086221948223488, 340572557390992900096, 179222835344084459061248, 112158801651454395931426816, 81399358513573250066141937664, 68530340884909785149816189222912
Offset: 0

Views

Author

Vladeta Jovovic, Aug 06 2007

Keywords

Examples

			a(2)=16 because there are 8 permutations that do not qualify: (1)(234), (1)(243), (123)(4), (124)(3), (132)(4), (134)(2), (142)(3) and (143)(2).
		

Crossrefs

Programs

  • Maple
    g:=(product(cosh(x^(2*k-1)/(2*k-1)),k=1..30))/sqrt(1-x^2): gser:=series(g,x= 0,30): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..13); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=0 or irem(j, 2)=0, multinomial(n,
           n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 || Mod[j, 2] == 0, multinomial[n, Join[{n - i*j}, Array[i &, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
  • PARI
    N=31; x='x+O('x^N);
    v0=Vec(serlaplace(1/sqrt(1-x^2)*prod(k=1,N, cosh(x^(2*k-1)/(2*k-1)))));
    vector(#v0\2,n,v0[2*n-1]) \\ Joerg Arndt, Jan 03 2011

Formula

E.g.f. with interleaved zeros: 1/sqrt(1-x^2)*Product_{k>=1} cosh(x^(2*k-1)/(2*k-1)). - Geoffrey Critzer, Jan 02 2011

Extensions

More terms from Emeric Deutsch, Aug 24 2007

A130278 Number of degree-n permutations such that number of cycles of size 2k-1 is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 1, 6, 17, 100, 529, 3766, 31121, 276984, 2755553, 29665306, 364627801, 4639937380, 64952094401, 973467571350, 15750475301921, 264870218828656, 4759194994114369, 90124395399063730, 1812001488739061417, 37956199941196210716, 832297726351555617569
Offset: 0

Views

Author

Vladeta Jovovic, Aug 06 2007

Keywords

Examples

			a(4)=17 because only the following 7 permutations do not qualify: (1)(2)(3)(4), (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4) and (14)(2)(3).
		

Crossrefs

Programs

  • Maple
    g:=(product(1+sinh(x^(2*k-1)/(2*k-1)),k=1..30))/sqrt(1-x^2): gser:=series(g,x =0,25): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(j=0 or irem(i, 2)=0 or irem(j, 2)=1, multinomial(n,
           n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i&, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)

Formula

E.g.f.: 1/sqrt(1-x^2)*Product_{k>0} (1+sinh(x^(2*k-1)/(2*k-1))).

Extensions

More terms from Emeric Deutsch, Aug 24 2007
Showing 1-6 of 6 results.