A130263
Number of degree-n permutations such that number of cycles of size k is odd (or zero) for every k.
Original entry on oeis.org
1, 1, 1, 6, 14, 85, 529, 3451, 26816, 243909, 2507333, 26196841, 323194816, 4086482335, 57669014597, 864137455455, 13792308331616, 231648908415001, 4211676768746569, 79205041816808905, 1584565388341689032, 33265011234209710011, 730971789582886971689
Offset: 0
a(2)=1 because we have (12) ((1)(2) does not qualify). a(4)=14 because the following 10 permutations of 4 do not qualify: (1)(2)(3)(4), (14)(2)(3), (1)(24)(3), (1)(2)(34), (13)(2)(4), (13)(24), (1)(23)(4), (14)(23), (12)(3)(4) and (12)(34).
-
m:=40;
f:= func< x | (&*[1 + Sinh(x^j/j): j in [1..m+1]]) >;
R:=PowerSeriesRing(Rationals(), m);
Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Mar 18 2023
-
g:=product(1+sinh(x^k/k),k=1..40): gser:=series(g,x=0,25): seq(factorial(n)*coeff(gser,x,n),n=0..21); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(j=0 or irem(j, 2)=1, multinomial(n, n-i*j, i$j)
*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
-
nn = 25; Range[0, nn]!*CoefficientList[Series[Product[1 + Sinh[x^k/k], {k, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 20 2016 *)
-
m=40
def f(x): return product( 1 + sinh(x^j/j) for j in range(1,m+2) )
def A130263_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( f(x) ).egf_to_ogf().list()
A130263_list(m) # G. C. Greubel, Mar 18 2023
A102759
Number of partitions of n-set in which number of blocks of size 2k is even (or zero) for every k.
Original entry on oeis.org
1, 1, 1, 2, 8, 27, 82, 338, 1647, 7668, 37779, 210520, 1276662, 7985200, 51302500, 358798144, 2677814900, 20309850311, 160547934756, 1344197852830, 11666610870142, 104156661915427, 962681713955130, 9238216839975106, 91508384728188792, 930538977116673878
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(irem(i, 2)=1 or irem(j, 2)=0, multinomial(
n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[Mod[i, 2] == 1 || Mod[j, 2] == 0, multinomial[n, Join[{n-i*j}, Table[i, {j}]]]/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]] ; a[n_] := b[n, n]; Table[ a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *)
-
N=31; x='x+O('x^N);
Vec(serlaplace(exp(sinh(x))*prod(k=1,N,cosh(x^(2*k)/(2*k)!))))
/* gives: [1, 1, 1, 2, 8, 27, 82, 338, 1647, 7668, ...] , Joerg Arndt, Jan 03 2011 */
Offset changed to 0 and two 1's prepended by
Alois P. Heinz, Mar 08 2015
A130268
Number of degree-2n permutations such that number of cycles of size k is even (or zero) for every k.
Original entry on oeis.org
1, 1, 4, 86, 2696, 168232, 15948032, 2172623168, 398846422144, 97541017510784, 29909993927387648, 11447388459863715328, 5284740632299379566592, 2927671399386587378671616, 1897593132067741963020476416, 1437515129453860805943287939072
Offset: 0
a(2)=4 because we have (1)(2)(3)(4), (12)(34), (13)(24) and (14)(23).
-
g:=product(cosh(x^k/k),k=1..30): gser:=series(g,x=0,30): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..13); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(j=0 or irem(j, 2)=0, multinomial(n, n-i*j, i$j)
*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 09 2015
-
nn=26;Select[Range[0,nn]!CoefficientList[Series[Product[Cosh[x^k/k],{k,1,nn}],{x,0,nn}],x],#>0&] (* Geoffrey Critzer, Sep 17 2013 *)
A130275
Number of degree-n permutations such that number of cycles of size 2k is odd (or zero) for every k.
Original entry on oeis.org
1, 1, 2, 6, 21, 105, 675, 4725, 35805, 322245, 3236625, 35602875, 425872755, 5536345815, 77347084815, 1160206272225, 18403556596425, 312860462139225, 5643104418376425, 107218983949152075, 2136610763952639975, 44868826043005439475, 986129980012277775675
Offset: 0
a(4)=21 because only the following three degree-4 permutations do not qualify: (12)(34), (13)(24) and (14)(23).
-
g:=sqrt((1+x)/(1-x))*(product(1+sinh(x^(2*k)/(2*k)),k=1..30)): gser:=series(g, x=0,25): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=1 or irem(j, 2)=1, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i &, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
A130276
Number of degree-2n permutations such that number of cycles of size 2k-1 is even (or zero) for every k.
Original entry on oeis.org
1, 2, 16, 416, 20224, 1645312, 196388864, 33279311872, 7427338829824, 2151276556845056, 771086221948223488, 340572557390992900096, 179222835344084459061248, 112158801651454395931426816, 81399358513573250066141937664, 68530340884909785149816189222912
Offset: 0
a(2)=16 because there are 8 permutations that do not qualify: (1)(234), (1)(243), (123)(4), (124)(3), (132)(4), (134)(2), (142)(3) and (143)(2).
-
g:=(product(cosh(x^(2*k-1)/(2*k-1)),k=1..30))/sqrt(1-x^2): gser:=series(g,x= 0,30): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..13); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=0 or irem(j, 2)=0, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 09 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 || Mod[j, 2] == 0, multinomial[n, Join[{n - i*j}, Array[i &, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
-
N=31; x='x+O('x^N);
v0=Vec(serlaplace(1/sqrt(1-x^2)*prod(k=1,N, cosh(x^(2*k-1)/(2*k-1)))));
vector(#v0\2,n,v0[2*n-1]) \\ Joerg Arndt, Jan 03 2011
A130278
Number of degree-n permutations such that number of cycles of size 2k-1 is odd (or zero) for every k.
Original entry on oeis.org
1, 1, 1, 6, 17, 100, 529, 3766, 31121, 276984, 2755553, 29665306, 364627801, 4639937380, 64952094401, 973467571350, 15750475301921, 264870218828656, 4759194994114369, 90124395399063730, 1812001488739061417, 37956199941196210716, 832297726351555617569
Offset: 0
a(4)=17 because only the following 7 permutations do not qualify: (1)(2)(3)(4), (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4) and (14)(2)(3).
-
g:=(product(1+sinh(x^(2*k-1)/(2*k-1)),k=1..30))/sqrt(1-x^2): gser:=series(g,x =0,25): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=0 or irem(j, 2)=1, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i&, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
Showing 1-6 of 6 results.