A130219
Number of partitions of 2n-set in which number of blocks of size k is even (or zero) for every k.
Original entry on oeis.org
1, 1, 4, 56, 631, 15457, 582374, 18589286, 894499204, 51154344582, 3823359163826, 274722100927166, 25458967562911128, 2569179797929092506, 284554990016509385086, 37830153187190688287522, 5093072752898942262610007, 798814778335473578083666573
Offset: 0
a(2)=4 because we have ab|cd, ac|bd, ad|bc and a|b|c|d.
-
g:=product(cosh(x^k/factorial(k)),k=1..35): gser:=series(g,x=0,32): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..14); # Emeric Deutsch, Sep 01 2007
# second Maple program:
g:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
`if`(irem(j, 2)=0, g(n-i*j, i-1, p+j*i)/j!/i!^j, 0), j=0..n/i)))
end:
a:= n-> g(2*n$2, 0):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 06 2015
-
g[n_, i_, p_] := g[n, i, p] = If[n == 0, p!, If[i<1, 0, Sum[If[Mod[j, 2] == 0, g[n - i*j, i-1, p + j*i]/j!/i!^j, 0], {j, 0, n/i}]]]; a[n_] := g[2*n, 2*n, 0]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, May 12 2015, after Alois P. Heinz *)
A130220
Number of partitions of n-set in which number of blocks of size k is odd (or zero) for every k.
Original entry on oeis.org
1, 1, 1, 5, 5, 27, 117, 331, 1213, 6579, 47193, 140527, 1213841, 4617927, 48210879, 243443739, 2392565149, 10377087115, 125434781845, 725455816883, 8086277450629, 59694530600595, 614469256831895, 4650128350629285, 52385811781286769, 467607504075929863
Offset: 0
a(4)=5 because we have abcd, a|bcd, acd|b, abd|c and abc|d.
-
g:=product(1+sinh(x^k/factorial(k)),k=1..30): gser:=series(g,x=0,28): seq(factorial(n)*coeff(gser,x,n),n=0..24); # Emeric Deutsch, Sep 01 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(j=0 or irem(j, 2)=1, multinomial(n, n-i*j, i$j)
/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[j == 0 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
A130223
Number of partitions of n-set in which number of blocks of size 2k-1 is odd (or zero) for every k.
Original entry on oeis.org
1, 1, 1, 5, 8, 42, 117, 541, 2403, 10485, 65778, 282262, 2284493, 9977853, 97315935, 450358629, 4966934284, 25167390922, 298399576813, 1693380647429, 20784317362947, 134137856170593, 1658511579778364, 12262539123056548, 150144857708406161, 1273792249691584593
Offset: 0
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=0 or irem(j, 2)=1, multinomial(
n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
max = 26; f[x_] = Exp[Cosh[x]-1]*Product[1+Sinh[x^(2*k-1)/(2*k-1)!], {k, 0, max}]; CoefficientList[f[x] + O[x]^max, x]*Range[0, max-1]! (* Jean-François Alcover, Jul 01 2015 *)
A130221
Number of partitions of n-set in which number of blocks of size 2k is odd (or zero) for every k.
Original entry on oeis.org
1, 1, 2, 5, 12, 37, 158, 667, 2740, 13461, 74710, 412095, 2406880, 15450541, 103187698, 715323395, 5236160612, 40014337437, 318488475658, 2637143123027, 22603231117364, 201268520010153, 1855401760331982, 17624602999352535, 173071602624629536
Offset: 0
a(4)=12 because from the 15 (=A000110(4)) partitions of the 4-set {a,b,c,d} only the partitions ab|cd, ac|bd and ad|bc do not qualify.
-
g:=exp(sinh(x))*(product(1+sinh(x^(2*k)/factorial(2*k)), k=1..25)): gser:= series(g,x=0,30): seq(factorial(n)*coeff(gser,x,n),n=0..23); # Emeric Deutsch, Aug 28 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=1 or irem(j, 2)=1, multinomial(
n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 || Mod[j, 2] == 1, multinomial[n, Join[{ n - i*j}, Array[i &, j]]]/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
A130222
Number of partitions of 2n-set in which number of blocks of size 2k-1 is even (or zero) for every k.
Original entry on oeis.org
1, 2, 11, 117, 2116, 54233, 1822053, 76771684, 3922196627, 238355654605, 16936961517144, 1387902030575371, 129757092644981529, 13704639448111317852, 1621528608322059614411, 213338281602779271672663, 31000779368619961156885708, 4945841944762007645453032073
Offset: 0
-
A:= proc(n) exp(cosh(x)-1) *mul(cosh(x^(2*k-1)/ (2*k-1)!), k=1..n) end: a:= n-> coeff(series(A(n), x, 2*n+1), x, 2*n) *(2*n)!: seq(a(n), n=0..20); # Alois P. Heinz, Sep 29 2008
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(irem(i, 2)=0 or j=0 or irem(j, 2)=0, multinomial(
n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[If[Mod[i, 2]==0 || j==0 || Mod[j, 2]==0, multinomial[n, {n - i j} ~Join~ Table[i, {j}]]/j! b[n - i j, i-1], 0], {j, 0, n/i}]]];
a[n_] := b[2n, 2n];
a /@ Range[0, 30] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)
A130275
Number of degree-n permutations such that number of cycles of size 2k is odd (or zero) for every k.
Original entry on oeis.org
1, 1, 2, 6, 21, 105, 675, 4725, 35805, 322245, 3236625, 35602875, 425872755, 5536345815, 77347084815, 1160206272225, 18403556596425, 312860462139225, 5643104418376425, 107218983949152075, 2136610763952639975, 44868826043005439475, 986129980012277775675
Offset: 0
a(4)=21 because only the following three degree-4 permutations do not qualify: (12)(34), (13)(24) and (14)(23).
-
g:=sqrt((1+x)/(1-x))*(product(1+sinh(x^(2*k)/(2*k)),k=1..30)): gser:=series(g, x=0,25): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=1 or irem(j, 2)=1, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i &, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
A130276
Number of degree-2n permutations such that number of cycles of size 2k-1 is even (or zero) for every k.
Original entry on oeis.org
1, 2, 16, 416, 20224, 1645312, 196388864, 33279311872, 7427338829824, 2151276556845056, 771086221948223488, 340572557390992900096, 179222835344084459061248, 112158801651454395931426816, 81399358513573250066141937664, 68530340884909785149816189222912
Offset: 0
a(2)=16 because there are 8 permutations that do not qualify: (1)(234), (1)(243), (123)(4), (124)(3), (132)(4), (134)(2), (142)(3) and (143)(2).
-
g:=(product(cosh(x^(2*k-1)/(2*k-1)),k=1..30))/sqrt(1-x^2): gser:=series(g,x= 0,30): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..13); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=0 or irem(j, 2)=0, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(2*n$2):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 09 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 || Mod[j, 2] == 0, multinomial[n, Join[{n - i*j}, Array[i &, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
-
N=31; x='x+O('x^N);
v0=Vec(serlaplace(1/sqrt(1-x^2)*prod(k=1,N, cosh(x^(2*k-1)/(2*k-1)))));
vector(#v0\2,n,v0[2*n-1]) \\ Joerg Arndt, Jan 03 2011
A130278
Number of degree-n permutations such that number of cycles of size 2k-1 is odd (or zero) for every k.
Original entry on oeis.org
1, 1, 1, 6, 17, 100, 529, 3766, 31121, 276984, 2755553, 29665306, 364627801, 4639937380, 64952094401, 973467571350, 15750475301921, 264870218828656, 4759194994114369, 90124395399063730, 1812001488739061417, 37956199941196210716, 832297726351555617569
Offset: 0
a(4)=17 because only the following 7 permutations do not qualify: (1)(2)(3)(4), (1)(2)(34), (1)(23)(4), (1)(24)(3), (12)(3)(4), (13)(2)(4) and (14)(2)(3).
-
g:=(product(1+sinh(x^(2*k-1)/(2*k-1)),k=1..30))/sqrt(1-x^2): gser:=series(g,x =0,25): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=0 or irem(j, 2)=1, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 0 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i&, j]]]*(i - 1)!^j/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
Showing 1-8 of 8 results.