A111733 a(n) = a(n-1) + a(n-2) + 7 where a(0) = a(1) = 1.
1, 1, 9, 17, 33, 57, 97, 161, 265, 433, 705, 1145, 1857, 3009, 4873, 7889, 12769, 20665, 33441, 54113, 87561, 141681, 229249, 370937, 600193, 971137, 1571337, 2542481, 4113825, 6656313, 10770145, 17426465, 28196617, 45623089, 73819713, 119442809
Offset: 0
Examples
a(2) = a(0) + a(1) + 7 = 1 + 1 + 7 = 9, which is the third term in the sequence.
Links
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1)
Programs
-
Magma
I:=[1,1,9]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 16 2015
-
Mathematica
a[0] := 1; a[1] := 1; a[n_] := a[n - 1] + a[n - 2] + 7; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 10 2006 *) LinearRecurrence[{2, 0, -1}, {1, 1, 9}, 40] (* Vincenzo Librandi, Sep 16 2015 *)
Formula
From R. J. Mathar, Jul 08 2009: (Start)
G.f.: (1-x+7*x^2)/((x-1)*(x^2+x-1)).
a(n) = 8*A000045(n+1) - 7 = 2*a(n-1) - a(n-3). (End)
a(n+1) - a(n) = A022091(n). - R. J. Mathar, Apr 22 2013
Extensions
More terms from Stefan Steinerberger, Mar 10 2006
More terms from Brian Lauer (bel136(AT)psu.edu), Apr 05 2006
Comments