cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A108352 a(n) = primal code characteristic of n, which is the least positive integer, if any, such that (n o)^k = 1, otherwise equal to 0. Here "o" denotes the primal composition operator, as illustrated in A106177 and A108371 and (n o)^k = n o ... o n, with k occurrences of n.

Original entry on oeis.org

1, 0, 2, 2, 2, 0, 2, 2, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 3, 0, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 0, 2, 0, 0, 2, 2, 0, 2, 3, 2, 0, 2, 0, 2, 0, 3, 3, 2, 0, 2, 3, 2, 0, 2, 0, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 2, 3, 2, 0, 0, 2, 2, 0, 2, 3, 2
Offset: 1

Views

Author

Jon Awbrey, May 31 2005, revised Jun 01 2005

Keywords

Examples

			a(1) = 1 because (1 o)^1 = ({ } o)^1 = 1.
a(2) = 0 because (2 o)^k = (1:1 o)^k = 2, for all positive k.
a(3) = 2 because (3 o)^2 = (2:1 o)^2 = 1.
a(4) = 2 because (4 o)^2 = (1:2 o)^2 = 1.
a(5) = 2 because (5 o)^2 = (3:1 o)^2 = 1.
a(6) = 0 because (6 o)^k = (1:1 2:1 o)^k = 6, for all positive k.
a(7) = 2 because (7 o)^2 = (4:1 o)^1 = 1.
a(8) = 2 because (8 o)^2 = (1:3 o)^1 = 1.
a(9) = 0 because (9 o)^k = (2:2 o)^k = 9, for all positive k.
a(10) = 0 because (10 o)^k = (1:1 3:1 o)^k = 10, for all positive k.
Detail of calculation for compositional powers of 12:
(12 o)^2 = (1:2 2:1) o (1:2 2:1) = (1:1 2:2) = 18
(12 o)^3 = (1:1 2:2) o (1:2 2:1) = (1:2 2:1) = 12
Detail of calculation for compositional powers of 20:
(20 o)^2 = (1:2 3:1) o (1:2 3:1) = (3:2) = 25
(20 o)^3 = (3:2) o (1:2 3:1) = 1.
From _Antti Karttunen_, Nov 20 2019: (Start)
For n=718, because 718 = prime(1)^1 * prime(72)^1, its partial function primal code is (1:1 72:1), which, when composed with itself stays same (that is, A106177(718,718) = 718), thus, as 1 is never reached, a(718) = 0, like is true for all even nonsquare semiprimes.
For n=1804, as 1804 = prime(1)^2 * prime(5)^1 * prime(13)^1, its primal code is (1:2 5:1 13:1), which, when composed with itself yields 203401 = prime(5)^2 * prime(13)^2, i.e., primal code (5:2 13:2), which when composed with (1:2 5:1 13:1) yields 1, which happened on the second iteration, thus a(1804) = 2+1 = 3.
(End)
		

Crossrefs

Programs

  • PARI
    A106177sq(n,k) = { my(f = factor(k)); prod(i=1,#f~,f[i, 1]^valuation(n, prime(f[i, 2]))); }; \\ As in A106177.
    A108352(n) = { my(orgn=n,xs=Set([]), k=1); while(n>1, if(vecsearch(xs,n), return(0)); xs = setunion([n],xs); n = A106177sq(n,orgn); k++); (k); }; \\ Antti Karttunen, Nov 20 2019

Formula

a(A065091(n)) = 2 for all n, a(A001747(n)) = 0 for all n, except n=2, and a(A046315(n)) = 2 for n > 1. - Antti Karttunen, Nov 20 2019

Extensions

Links and cross-references added, Aug 19 2005
Term a(63) corrected and five more terms added (up to a(105)) by Antti Karttunen, Nov 20 2019

A108353 For each nonnegative integer n, a(n) is the smallest positive integer j whose primal code characteristic is n, that is, the smallest j such that A108352(j) = n.

Original entry on oeis.org

2, 1, 3, 20, 756, 178200
Offset: 0

Views

Author

Jon Awbrey, Jun 17 2005, extended Aug 20 2005

Keywords

Comments

Suggested by Antti Karttunen.

Examples

			Writing (prime(i))^j as i:j, we have the following table:
Primal Functions and Functional Digraphs for a(0) to a(5)
` ` ` 2 = 1:1 ` ` ` ` ` ` || 1 -> 1 (infinite loop)
` ` ` 1 = { } ` ` ` ` ` ` || 1
` ` ` 3 = 2:1 ` ` ` ` ` ` || 2 -> 1
` ` `20 = 1:2 3:1 ` ` ` ` || 3 -> 1 -> 2
` ` 756 = 1:2 2:3 4:1 ` ` || 4 -> 1 -> 2 -> 3
`178200 = 1:3 2:4 3:2 5:1 || 5 -> 1 -> 3 -> 2 -> 4
		

Crossrefs

A112868 Positive integers sorted by rote weight and primal code characteristic.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 10, 12, 14, 18, 11, 13, 17, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536, 22, 26, 34, 36, 38, 46, 50, 54, 98, 106, 125, 162, 2401, 15, 21, 29, 31, 37, 41, 43, 59, 61, 67, 83, 97, 103, 121, 131, 169, 227, 241, 243, 289, 311, 34, 361
Offset: 1

Views

Author

Jon Awbrey, Oct 13 2005

Keywords

Comments

Positive integers m sorted by g(m) = A062537(m) and q(m) = A108352(m).

Examples

			Primal Functions, Primal Codes, Sort Parameters, Subtotals
==========================================================
Primal Function | ` ` ` Primal Code ` = ` a | g q | s | t
==========================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 1 | 1 | 1
==========================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 0 | 1 | 1
==========================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 | 2 | 2
==========================================================
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 0 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 0 | 2 |
----------------+---------------------------+-----+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 2 | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 2 | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 2 | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 2 | 4 | 6
==========================================================
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 0 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 0 | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 0 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 0 | 4 |
----------------+---------------------------+-----+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 2 | ` |
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 2 | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 2 | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 2 | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 2 | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 2 | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 2 | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 2 | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 2 | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 2 | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 2 | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 2 | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 2 | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 2 | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 2 | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 2 |16 |20
==========================================================
a = this sequence
g = rote weight in gammas = A062537
q = primal code character = A108352
s = count in (g, q) class = A112869
t = count in weight class = A061396
		

Crossrefs

A112869 Triangle T(g, q) = number of rotes of weight g and primal code characteristic q.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 16, 13, 56, 4
Offset: 1

Views

Author

Jon Awbrey, Oct 13 2005

Keywords

Comments

T(g, q) = |{positive integers m : A062537(m) = g and A108352(m) = q}|.
This is the column that is labeled "s" in the tabulation of A112868.
Row sums = A061396.

Examples

			Table T(g, q), omitting empty cells, begins as follows:
g\q| 0 ` 1 ` 2 ` 3 ` 4 ` 5
---+-----------------------
`0 | ` ` 1 ` ` ` ` ` ` ` `
`1 | 1 ` ` ` ` ` ` ` ` ` `
`2 | ` ` ` ` 2 ` ` ` ` ` `
`3 | 2 ` ` ` 4 ` ` ` ` ` `
`4 | 4 ` ` `16 ` ` ` ` ` `
`5 |13 ` ` `56 ` 4 ` ` ` `
		

Crossrefs

A112871 Triangle T(h, q) = number of rotes of height h and quench q.

Original entry on oeis.org

1, 1, 5, 2
Offset: 1

Views

Author

Jon Awbrey, Oct 14 2005

Keywords

Comments

T(h, q) = |{positive integers m : A109301(m) = h and A108352(m) = q}|.
This is the column that is labeled "s" in the tabulation of A112870.
q(m) = quench(m) = A108352(m) = primal code characteristic of m.

Examples

			Table T(h, q), omitting empty cells, begins as follows:
h\q| 0 ` 1 ` 2
---+----------
`0 | ` ` 1 ` `
`1 | 1 ` ` ` `
`2 | 5 ` ` ` 2
Row sums = A109300.
		

Crossrefs

Extensions

Too short to be interesting - hope more terms can be supplied soon! - N. J. A. Sloane

A113197 Positive integers sorted by rote weight, rote height and rote quench.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 12, 18, 10, 14, 13, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536, 36, 26, 46, 50, 54, 98, 125, 162, 2401, 15, 21, 37, 61, 169, 343, 529, 625, 729, 4096, 19683, 262144, 20, 24, 28, 48, 22, 34, 38, 106, 29, 41, 43, 83, 97
Offset: 1

Views

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote height in gammas is h(m) = A109301(m) and the rote quench or primal code characteristic is q(m) = A108352(m).

Examples

			Primal Functions, Primal Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g h q | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 1 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 0 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 2 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 2 | 2 | 2 | 2
================================================================
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 2 0 | ` | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 2 0 | 2 | 2 |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 3 2 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 3 2 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 3 2 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 3 2 | 4 | 4 | 6
================================================================
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 2 0 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 2 0 | 2 | 2 |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 3 0 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 3 0 | 2 | ` |
----------------+---------------------------+-------+---+---+---
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 3 2 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 3 2 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 3 2 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 3 2 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 3 2 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 3 2 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 3 2 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 3 2 | 8 |10 |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 4 2 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 4 2 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 4 2 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 4 2 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 4 2 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 4 2 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 4 2 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 4 2 | 8 | 8 |20
================================================================
a = this sequence
g = rote weight in gammas = A062537
h = rote height in gammas = A109301
q = primal code character = A108352
r = number in (g,h,q) set = A113198
s = count in (g, h) class = A111793
t = count in weight class = A061396
		

Crossrefs

A113198 Tetrahedron T(g, h, q) = number of rotes of weight g, height h, quench q.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 2, 8, 8, 1, 8, 12, 4, 4, 28, 16
Offset: 1

Views

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

T(g, h, q) = |{m : A062537(m) = g, A109301(m) = h, A108352(m) = q}|.
This is the column that is labeled "r" in the tabulation of A113197.

Examples

			Table T(g, h, q), omitting empty cells, starts out as follows:
--------+------------------------------------------------------------
g\(h,q) | (0,1) ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` | ` ` ` (1,0) ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` (2,0) (2,2) ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` (3,0) (3,2) (3,3) ` ` ` ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` (4,0) (4,2) ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` (5,2)
========+============================================================
0 ` ` ` | ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
1 ` ` ` | ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
2 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
3 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
4 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 2 ` ` 8 ` ` ` ` ` ` ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` ` ` `
--------+------------------------------------------------------------
5 ` ` ` | ` ` ` ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` `12 ` ` 4 ` ` ` ` ` ` ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` `28 ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `16 `
--------+------------------------------------------------------------
Row sums = A111793. Horizontal section sums = A061396.
		

Crossrefs

A112870 Positive integers sorted by rote height and primal code characteristic.

Original entry on oeis.org

1, 2, 6, 9, 12, 18, 36, 3, 4
Offset: 1

Views

Author

Jon Awbrey, Oct 14 2005

Keywords

Comments

Positive integers m sorted by h(m) = A109301(m) and q(m) = A108352(m).
Using "quench" as a shorter substitute for "primal code characteristic", the rote corresponding to the positive integer m has a quench of q(m) = A108352(m). Numbers with primal code characteristic 0 are "unquenchable".

Examples

			Primal Function | Primal Code = a | h q | s | t
----------------+-----------------+-----+---+---
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` 1 | 0 1 | 1 | 1
----------------+-----------------+-----+---+---
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` 2 | 1 0 | 1 | 1
----------------+-----------------+-----+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` 6 | 2 0 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` 9 | 2 0 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` `12 | 2 0 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` `18 | 2 0 | ` |
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` `36 | 2 0 | 5 |
----------------+-----------------+-----+---+---
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` 3 | 2 2 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` 4 | 2 2 | 2 | 7
----------------+-----------------+-----+---+---
a = this sequence
h = rote height in gammas = A109301
q = primal code character = A108352
s = count in (h, q) class = A112871
t = count in height class = A109300
		

Crossrefs

A113199 Positive integers sorted by rote weight, rote quench and rote height.

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 7, 8, 16, 12, 18, 10, 14, 13, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536, 36, 26, 46, 50, 54, 98, 125, 162, 2401, 22, 34, 38, 106, 15, 21, 37, 61, 169, 343, 529, 625, 729, 4096, 19683, 262144, 29, 41, 43, 83, 97, 103, 121, 227
Offset: 1

Views

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote quench or primal code characteristic is q(m) = A108352(m) and the rote height in gammas is h(m) = A109301(m).
This sequence begins to differ from A113197 at the 40th term, a(40) = 22.

Examples

			Primal Functions, Primal Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g q h | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 1 0 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 0 1 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 2 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 2 | 2 | 2 | 2
================================================================
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 0 2 | ` | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 0 2 | 2 | 2 |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 2 3 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 2 3 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 2 3 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 2 3 | 4 | 4 | 6
================================================================
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 0 2 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 0 2 | 2 | ` |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 0 3 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 0 3 | 2 | 4 |
----------------+---------------------------+-------+---+---+---
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 2 3 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 2 3 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 2 3 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 2 3 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 2 3 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 2 3 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 2 3 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 2 3 | 8 | ` |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 2 4 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 2 4 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 2 4 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 2 4 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 2 4 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 2 4 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 2 4 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 2 4 | 8 |16 |20
================================================================
a = this sequence
g = rote weight in gammas = A062537
q = primal code character = A108352
h = rote height in gammas = A109301
r = number in (g,q,h) set = A113200
s = count in (g, q) class = A112869
t = count in weight class = A061396
		

Crossrefs

A113200 Tetrahedron T(g, q, h) = number of rotes of weight g, quench q, height h.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 2, 8, 8, 1, 8, 4, 12, 28, 16, 4
Offset: 1

Views

Author

Jon Awbrey, Oct 18 2005

Keywords

Comments

T(g, q, h) = |{m : A062537(m) = g, A108352(m) = q, A109301(m) = h}|.
This is the column that is labeled "r" in the tabulation of A113199.
a(n) is a permutation of the elements in A113198.

Examples

			Table T(g, q, h), omitting empty cells, starts out as follows:
--------+------------------------------------------------------------
g\(q,h) | (1,0) (0,1) (0,2) ` ` ` (0,3) ` ` ` ` ` ` (0,4) ` ` ` ` ` `
` ` ` ` | ` ` ` ` ` ` ` ` ` (2,2) ` ` ` (2,3) ` ` ` ` ` ` (2,4) (2,5)
` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` (3,3) ` ` ` ` ` ` ` ` `
========+============================================================
0 ` ` ` | ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
1 ` ` ` | ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
2 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
3 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
4 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` ` ` ` ` ` ` ` 8 ` ` ` `
--------+------------------------------------------------------------
5 ` ` ` | ` ` ` ` ` ` ` 1 ` ` ` ` ` 8 ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `12 ` ` ` ` ` ` ` `28 ` `16 `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` `
--------+------------------------------------------------------------
Row sums = A112869. Horizontal section sums = A061396.
		

Crossrefs

Showing 1-10 of 11 results. Next