A111830 Triangle P, read by rows, that satisfies [P^7](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(7*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.
1, 1, 1, 1, 7, 1, 1, 154, 49, 1, 1, 16275, 8281, 343, 1, 1, 9106461, 6558209, 410914, 2401, 1, 1, 28543862991, 27307109501, 2298650515, 20170801, 16807, 1, 1, 521136519414483, 636922972420469, 67522139062441, 790856748801, 988621354
Offset: 0
Examples
Let q=7; the g.f. of column k of matrix power P^m is: 1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) + (m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) + (m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ... where L(x) satisfies: x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ... and L(x) = x - 5/2!*x^2 + 83/3!*x^3 + 16110/4!*x^4 +... (A111834). Thus the g.f. of column 0 of matrix power P^m is: 1 + m*L(x) + m^2/2!*L(x)*L(7*x) + m^3/3!*L(x)*L(7*x)*L(7^2*x) + m^4/4!*L(x)*L(7*x)*L(7^2*x)*L(7^3*x) + ... Triangle P begins: 1; 1,1; 1,7,1; 1,154,49,1; 1,16275,8281,343,1; 1,9106461,6558209,410914,2401,1; 1,28543862991,27307109501,2298650515,20170801,16807,1; ... where P^7 shifts columns left and up one place: 1; 7,1; 154,49,1; 16275,8281,343,1; ...
Crossrefs
Programs
-
PARI
P(n,k,q=7)=local(A=Mat(1),B);if(n
Formula
Let q=7; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111834).
Comments