A111831 Number of partitions of 6*7^n into powers of 7, also equals column 1 of triangle A111830, which shifts columns left and up under matrix 7th power.
1, 7, 154, 16275, 9106461, 28543862991, 521136519414483, 56980036448207052005, 38084892600214854893482284, 158081960770204032330986210466109, 4125860571927530263431055188002578191656
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
Crossrefs
Programs
-
PARI
a(n,q=7)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
Formula
a(n) = [x^(6*7^n)] 1/Product_{j>=0}(1-x^(7^j)).
Comments