A111821
Number of partitions of 4*5^n into powers of 5, also equals column 1 of triangle A111820, which shifts columns left and up under matrix 5th power.
Original entry on oeis.org
1, 5, 55, 2055, 291430, 165397680, 390075741430, 3927972221522680, 172358768282285194555, 33479766506261422878944555, 29150234311482124092454001991430
Offset: 0
-
a(n,q=5)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
A111834
Column 0 of the matrix logarithm (A111833) of triangle A111830, which shifts columns left and up under matrix 7th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -5, 83, 16110, -40097784, -388036363380, 82804198261002036, 50475967918183333160880, -711988160501968313699728393632, -26438313284970847487368499812182785280, 22571673265500745067336177578868612107537514880
Offset: 0
A(x) = x - 5/2!*x^2 + 83/3!*x^3 + 16110/4!*x^4 - 40097784/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(7*x)/2! + A(x)*A(7*x)*A(7^2*x)/3! +
A(x)*A(7*x)*A(7^2*x)*A(7^3*x)/4! + ...
Let G(x) be the g.f. of A111831 (column 1 of A111830), then
G(x) = 1 + 7*A(x) + 7^2*A(x)*A(7*x)/2! +
7^3*A(x)*A(7*x)*A(7^2*x)/3! +
7^4*A(x)*A(7*x)*A(7^2*x)*A(7^3*x)/4! + ...
-
{a(n,q=7)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111826
Number of partitions of 5*6^n into powers of 6, also equals column 1 of triangle A111825, which shifts columns left and up under matrix 6th power.
Original entry on oeis.org
1, 6, 96, 6306, 1883076, 2700393702, 19324893252552, 709398600017820522, 136347641698786289641932, 139389318443495655514432423662, 767442745549858935398537400096197328
Offset: 0
-
a(n,q=6)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
A111830
Triangle P, read by rows, that satisfies [P^7](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(7*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 154, 49, 1, 1, 16275, 8281, 343, 1, 1, 9106461, 6558209, 410914, 2401, 1, 1, 28543862991, 27307109501, 2298650515, 20170801, 16807, 1, 1, 521136519414483, 636922972420469, 67522139062441, 790856748801, 988621354
Offset: 0
Let q=7; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 5/2!*x^2 + 83/3!*x^3 + 16110/4!*x^4 +... (A111834).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(7*x) + m^3/3!*L(x)*L(7*x)*L(7^2*x) +
m^4/4!*L(x)*L(7*x)*L(7^2*x)*L(7^3*x) + ...
Triangle P begins:
1;
1,1;
1,7,1;
1,154,49,1;
1,16275,8281,343,1;
1,9106461,6558209,410914,2401,1;
1,28543862991,27307109501,2298650515,20170801,16807,1; ...
where P^7 shifts columns left and up one place:
1;
7,1;
154,49,1;
16275,8281,343,1; ...
A111836
Number of partitions of 7*8^n into powers of 8, also equals column 1 of triangle A111835, which shifts columns left and up under matrix 8th power.
Original entry on oeis.org
1, 8, 232, 36968, 35593832, 219379963496, 9003699178010216, 2530260913162860295784, 4970141819535151534947497576, 69322146154435681317709098939119208
Offset: 0
-
a(n,q=8)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
A111817
Number of partitions of 3*4^n into powers of 4, also equals column 1 of triangle A078536, which shifts columns left and up under matrix 4th power.
Original entry on oeis.org
1, 4, 28, 524, 29804, 5423660, 3276048300, 6744720496300, 48290009081437356, 1221415413140406958252, 110523986015743458745929900, 36150734459755630877180158951596
Offset: 0
-
a(n,q=4)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
Showing 1-6 of 6 results.
Comments