A111821
Number of partitions of 4*5^n into powers of 5, also equals column 1 of triangle A111820, which shifts columns left and up under matrix 5th power.
Original entry on oeis.org
1, 5, 55, 2055, 291430, 165397680, 390075741430, 3927972221522680, 172358768282285194555, 33479766506261422878944555, 29150234311482124092454001991430
Offset: 0
-
a(n,q=5)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
A111819
Column 0 of the matrix logarithm (A111818) of triangle A078536, which shifts columns left and up under matrix 4th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -2, 2, 840, -76056, -158761104, 390564896784, 14713376473366656, -783793232940393380736, -571732910947761663424746240, 603368029500890443054004423520000, 8390120127886533420753746115877557580800
Offset: 0
A(x) = x - 2/2!*x^2 + 2/3!*x^3 + 840/4!*x^4 - 76056/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(4*x)/2! + A(x)*A(4*x)*A(4^2*x)/3! +
A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ...
Let G(x) be the g.f. of A111817 (column 1 of A078536), then
G(x) = 1 + 4*A(x) + 4^2*A(x)*A(4*x)/2! +
4^3*A(x)*A(4*x)*A(4^2*x)/3! +
4^4*A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ...
-
{a(n,q=4)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111826
Number of partitions of 5*6^n into powers of 6, also equals column 1 of triangle A111825, which shifts columns left and up under matrix 6th power.
Original entry on oeis.org
1, 6, 96, 6306, 1883076, 2700393702, 19324893252552, 709398600017820522, 136347641698786289641932, 139389318443495655514432423662, 767442745549858935398537400096197328
Offset: 0
-
a(n,q=6)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
A111831
Number of partitions of 6*7^n into powers of 7, also equals column 1 of triangle A111830, which shifts columns left and up under matrix 7th power.
Original entry on oeis.org
1, 7, 154, 16275, 9106461, 28543862991, 521136519414483, 56980036448207052005, 38084892600214854893482284, 158081960770204032330986210466109, 4125860571927530263431055188002578191656
Offset: 0
-
a(n,q=7)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
A111836
Number of partitions of 7*8^n into powers of 8, also equals column 1 of triangle A111835, which shifts columns left and up under matrix 8th power.
Original entry on oeis.org
1, 8, 232, 36968, 35593832, 219379963496, 9003699178010216, 2530260913162860295784, 4970141819535151534947497576, 69322146154435681317709098939119208
Offset: 0
-
a(n,q=8)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+2,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i || j==1,B[i,j]=1,B[i,j]=(A^q)[i-1,j-1]);));A=B); return(A[n+2,2]))
Showing 1-5 of 5 results.
Comments