cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A111814 Column 0 of the matrix logarithm (A111813) of triangle A078121, which shifts columns left and up under matrix square; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, 0, -2, 0, 216, 0, -568464, 0, 36058658688, 0, -53694310935340800, 0, 1790669979087018171448320, 0, -1280832788659041410080025283840000, 0, 18961468161294510864200732026858464699187200, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Surprisingly, the e.g.f. A(x) is an odd function: A(-x) = -A(x). Let q=2; the g.f. of column k of A078121^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			E.g.f.: A(x) = x - 2/3!*x^3 + 216/5!*x^5 - 568464/7!*x^7 + ...
where A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(2*x)/2! + A(x)*A(2*x)*A(2^2*x)/3!
+ A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
also:
x/(1-x^2) = A(x) + A(x)*A(2*x)*A(2^2*x)/3!
+ A(x)*A(2*x)*A(2^2*x)*A(2^3*x)*A(2^4*x)/5! + ...
Let G(x) be the g.f. of A002577 (column 1 of A078121), then
G(x) = 1 + 2*A(x) + 2^2*A(x)*A(2*x)/2! +
2^3*A(x)*A(2*x)*A(2^2*x)/3! +
2^4*A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
		

Crossrefs

Cf. A078121 (triangle), A002577, A111813 (matrix log); A110505 (q=-1), A111816 (q=3), A111819 (q=4), A111824 (q=5), A111829 (q=6), A111834 (q=7), A111839 (q=8).

Programs

  • PARI
    {a(n,q=2)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}

Formula

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(2^j*x)/(j+1). E.g.f. satisfies: x/(1-x^2) = Sum_{n>=1}Prod_{j=0..2*n}A(2^j*x)/(j+1).

A111816 Column 0 of the matrix logarithm (A111815) of triangle A078122, which shifts columns left and up under matrix cube; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, -1, -3, 150, 1236, -2555748, -64342116, 5885700899760, 442646611978752, -1737387344860364226240, -367706581563500487774720, 60788555325888838346137808787840, 34626906551623392401873575206240000, -237458311254822429335982538087618909465992960
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Let q=3; the g.f. of column k of A078122^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			E.g.f.: A(x) = x - 1/2!*x^2 - 3/3!*x^3 + 150/4!*x^4 + 1236/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(3*x)/2! + A(x)*A(3*x)*A(3^2*x)/3! +
A(x)*A(3*x)*A(3^2*x)*A(3^3*x)/4! + ...
Let G(x) be the g.f. of A078124 (column 1 of A078122), then
G(x) = 1 + 3*A(x) + 3^2*A(x)*A(3*x)/2! +
3^3*A(x)*A(3*x)*A(3^2*x)/3! +
3^4*A(x)*A(3*x)*A(3^2*x)*A(3^3*x)/4! + ...
		

Crossrefs

Cf. A078122 (triangle), A078124, A111815 (matrix log); A110505 (q=-1), A111814 (q=2), A111819 (q=4), A111824 (q=5), A111829 (q=6), A111834 (q=7), A111839 (q=8).

Programs

  • PARI
    {a(n,q=3)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}

Formula

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(3^j*x)/(j+1).

A111818 Matrix log of triangle A078536, which shifts columns left and up under matrix 4th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -2, 4, 0, 2, -8, 16, 0, 840, 8, -32, 64, 0, -76056, 3360, 32, -128, 256, 0, -158761104, -304224, 13440, 128, -512, 1024, 0, 390564896784, -635044416, -1216896, 53760, 512, -2048, 4096, 0, 14713376473366656, 1562259587136, -2540177664, -4867584, 215040, 2048, -8192, 16384, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 4^k multiplied by column 0 (A111819) when ignoring zeros above the diagonal.

Examples

			Matrix log of A078536, with factorial denominators, begins:
0;
1/1!, 0;
-2/2!, 4/1!, 0;
2/3!, -8/2!, 16/1!, 0;
840/4!, 8/3!, -32/2!, 64/1!, 0;
-76056/5!, 3360/4!, 32/3!, -128/2!, 256/1!, 0;
-158761104/6!, -304224/5!, 13440/4!, 128/3!, -512/2!, 1024/1!, 0;
		

Crossrefs

Cf. A078536, A111819 (column 0), A111845 (variant); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111823 (q=5), A111828 (q=6), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=4)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 4^k*T(n-k, 0) = A111819(n-k) for n>=k>=0.

A111824 Column 0 of the matrix logarithm (A111823) of triangle A111820, which shifts columns left and up under matrix 5th power; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, -3, 16, 2814, -1092180, -3603928080, 58978973128440, 5974833380453777520, -3294186866481455009752320, -10279982482873484428390722523200, 175129088125361734252730927280177244800
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Let q=5; the g.f. of column k of A111820^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			A(x) = x - 3/2!*x^2 + 16/3!*x^3 + 2814/4!*x^4 - 1092180/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(5*x)/2! + A(x)*A(5*x)*A(5^2*x)/3! +
A(x)*A(5*x)*A(5^2*x)*A(5^3*x)/4! + ...
Let G(x) be the g.f. of A111821 (column 1 of A111820), then
G(x) = 1 + 5*A(x) + 5^2*A(x)*A(5*x)/2! +
5^3*A(x)*A(5*x)*A(5^2*x)/3! +
5^4*A(x)*A(5*x)*A(5^2*x)*A(5^3*x)/4! + ...
		

Crossrefs

Cf. A111820 (triangle), A111821, A111823 (matrix log); A110505 (q=-1), A111814 (q=2), A111816 (q=3), A111819 (q=4), A111829 (q=6), A111834 (q=7), A111839 (q=8).

Programs

  • PARI
    {a(n,q=5)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}

Formula

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(5^j*x)/(j+1).

A111829 Column 0 of the matrix logarithm (A111828) of triangle A111825, which shifts columns left and up under matrix 6th power; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, -4, 42, 7296, -7931976, -45557382240, 3064554175021200, 801993619807364206080, -2618439032548254776387771520, -30580166025709706974876961026475520, 4440597519115996836838709580481861376121600
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Let q=6; the g.f. of column k of A111825^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			A(x) = x - 4/2!*x^2 + 42/3!*x^3 + 7296/4!*x^4 - 7931976/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(6*x)/2! + A(x)*A(6*x)*A(6^2*x)/3! +
A(x)*A(6*x)*A(6^2*x)*A(6^3*x)/4! + ...
Let G(x) be the g.f. of A111826 (column 1 of A111825), then
G(x) = 1 + 6*A(x) + 6^2*A(x)*A(6*x)/2! +
6^3*A(x)*A(6*x)*A(6^2*x)/3! +
6^4*A(x)*A(6*x)*A(6^2*x)*A(6^3*x)/4! + ...
		

Crossrefs

Cf. A111825 (triangle), A111826, A111828 (matrix log); A110505 (q=-1), A111814 (q=2), A111816 (q=3), A111819 (q=4), A111824 (q=5), A111834 (q=7), A111839 (q=8).

Programs

  • PARI
    {a(n,q=6)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}

Formula

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(6^j*x)/(j+1).

A111834 Column 0 of the matrix logarithm (A111833) of triangle A111830, which shifts columns left and up under matrix 7th power; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, -5, 83, 16110, -40097784, -388036363380, 82804198261002036, 50475967918183333160880, -711988160501968313699728393632, -26438313284970847487368499812182785280, 22571673265500745067336177578868612107537514880
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Let q=7; the g.f. of column k of A111830^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			A(x) = x - 5/2!*x^2 + 83/3!*x^3 + 16110/4!*x^4 - 40097784/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(7*x)/2! + A(x)*A(7*x)*A(7^2*x)/3! +
A(x)*A(7*x)*A(7^2*x)*A(7^3*x)/4! + ...
Let G(x) be the g.f. of A111831 (column 1 of A111830), then
G(x) = 1 + 7*A(x) + 7^2*A(x)*A(7*x)/2! +
7^3*A(x)*A(7*x)*A(7^2*x)/3! +
7^4*A(x)*A(7*x)*A(7^2*x)*A(7^3*x)/4! + ...
		

Crossrefs

Cf. A111830 (triangle), A111831, A111833 (matrix log); A110505 (q=-1), A111814 (q=2), A111816 (q=3), A111819 (q=4), A111824 (q=5), A111829 (q=6), A111839 (q=8).

Programs

  • PARI
    {a(n,q=7)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}

Formula

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(7^j*x)/(j+1).

A111839 Column 0 of the matrix logarithm (A111838) of triangle A111835, which shifts columns left and up under matrix 8th power; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, -6, 142, 31800, -159468264, -2481298801008, 1414130111428687344, 1827317023092830201950080, -89946874545119714361987192509568, -9262235489215916508714844705185660161280
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Let q=8; the g.f. of column k of A111825^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			A(x) = x - 6/2!*x^2 + 142/3!*x^3 + 31800/4!*x^4 - 159468264/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(8*x)/2! + A(x)*A(8*x)*A(8^2*x)/3! +
A(x)*A(8*x)*A(8^2*x)*A(8^3*x)/4! + ...
Let G(x) be the g.f. of A111836 (column 1 of A111835), then
G(x) = 1 + 8*A(x) + 8^2*A(x)*A(8*x)/2! +
8^3*A(x)*A(8*x)*A(8^2*x)/3! +
8^4*A(x)*A(8*x)*A(8^2*x)*A(8^3*x)/4! + ...
		

Crossrefs

Cf. A111835 (triangle), A111836, A111838 (matrix log); A110505 (q=-1), A111814 (q=2), A111816 (q=3), A111819 (q=4), A111824 (q=5), A111829 (q=6), A111834 (q=7).

Programs

  • PARI
    {a(n,q=8)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}

Formula

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(8^j*x)/(j+1).
Showing 1-7 of 7 results.