A111814
Column 0 of the matrix logarithm (A111813) of triangle A078121, which shifts columns left and up under matrix square; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, 0, -2, 0, 216, 0, -568464, 0, 36058658688, 0, -53694310935340800, 0, 1790669979087018171448320, 0, -1280832788659041410080025283840000, 0, 18961468161294510864200732026858464699187200, 0
Offset: 0
E.g.f.: A(x) = x - 2/3!*x^3 + 216/5!*x^5 - 568464/7!*x^7 + ...
where A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(2*x)/2! + A(x)*A(2*x)*A(2^2*x)/3!
+ A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
also:
x/(1-x^2) = A(x) + A(x)*A(2*x)*A(2^2*x)/3!
+ A(x)*A(2*x)*A(2^2*x)*A(2^3*x)*A(2^4*x)/5! + ...
Let G(x) be the g.f. of A002577 (column 1 of A078121), then
G(x) = 1 + 2*A(x) + 2^2*A(x)*A(2*x)/2! +
2^3*A(x)*A(2*x)*A(2^2*x)/3! +
2^4*A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
-
{a(n,q=2)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111815
Matrix log of triangle A078122, which shifts columns left and up under matrix cube; these terms are the result of multiplying each element in row n and column k by (n-k)!.
Original entry on oeis.org
0, 1, 0, -1, 3, 0, -3, -3, 9, 0, 150, -9, -9, 27, 0, 1236, 450, -27, -27, 81, 0, -2555748, 3708, 1350, -81, -81, 243, 0, -64342116, -7667244, 11124, 4050, -243, -243, 729, 0, 5885700899760, -193026348, -23001732, 33372, 12150, -729, -729, 2187, 0
Offset: 0
Matrix log of A078122, with factorial denominators, begins:
0;
1/1!, 0;
-1/2!, 3/1!, 0;
-3/3!, -3/2!, 9/1!, 0;
150/4!, -9/3!, -9/2!, 27/1!, 0;
1236/5!, 450/4!, -27/3!, -27/2!, 81/1!, 0;
-2555748/6!, 3708/5!, 1350/4!, -81/3!, -81/2!, 243/1!, 0; ...
A111824
Column 0 of the matrix logarithm (A111823) of triangle A111820, which shifts columns left and up under matrix 5th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -3, 16, 2814, -1092180, -3603928080, 58978973128440, 5974833380453777520, -3294186866481455009752320, -10279982482873484428390722523200, 175129088125361734252730927280177244800
Offset: 0
A(x) = x - 3/2!*x^2 + 16/3!*x^3 + 2814/4!*x^4 - 1092180/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(5*x)/2! + A(x)*A(5*x)*A(5^2*x)/3! +
A(x)*A(5*x)*A(5^2*x)*A(5^3*x)/4! + ...
Let G(x) be the g.f. of A111821 (column 1 of A111820), then
G(x) = 1 + 5*A(x) + 5^2*A(x)*A(5*x)/2! +
5^3*A(x)*A(5*x)*A(5^2*x)/3! +
5^4*A(x)*A(5*x)*A(5^2*x)*A(5^3*x)/4! + ...
-
{a(n,q=5)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111829
Column 0 of the matrix logarithm (A111828) of triangle A111825, which shifts columns left and up under matrix 6th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -4, 42, 7296, -7931976, -45557382240, 3064554175021200, 801993619807364206080, -2618439032548254776387771520, -30580166025709706974876961026475520, 4440597519115996836838709580481861376121600
Offset: 0
A(x) = x - 4/2!*x^2 + 42/3!*x^3 + 7296/4!*x^4 - 7931976/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(6*x)/2! + A(x)*A(6*x)*A(6^2*x)/3! +
A(x)*A(6*x)*A(6^2*x)*A(6^3*x)/4! + ...
Let G(x) be the g.f. of A111826 (column 1 of A111825), then
G(x) = 1 + 6*A(x) + 6^2*A(x)*A(6*x)/2! +
6^3*A(x)*A(6*x)*A(6^2*x)/3! +
6^4*A(x)*A(6*x)*A(6^2*x)*A(6^3*x)/4! + ...
-
{a(n,q=6)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111834
Column 0 of the matrix logarithm (A111833) of triangle A111830, which shifts columns left and up under matrix 7th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -5, 83, 16110, -40097784, -388036363380, 82804198261002036, 50475967918183333160880, -711988160501968313699728393632, -26438313284970847487368499812182785280, 22571673265500745067336177578868612107537514880
Offset: 0
A(x) = x - 5/2!*x^2 + 83/3!*x^3 + 16110/4!*x^4 - 40097784/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(7*x)/2! + A(x)*A(7*x)*A(7^2*x)/3! +
A(x)*A(7*x)*A(7^2*x)*A(7^3*x)/4! + ...
Let G(x) be the g.f. of A111831 (column 1 of A111830), then
G(x) = 1 + 7*A(x) + 7^2*A(x)*A(7*x)/2! +
7^3*A(x)*A(7*x)*A(7^2*x)/3! +
7^4*A(x)*A(7*x)*A(7^2*x)*A(7^3*x)/4! + ...
-
{a(n,q=7)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111839
Column 0 of the matrix logarithm (A111838) of triangle A111835, which shifts columns left and up under matrix 8th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -6, 142, 31800, -159468264, -2481298801008, 1414130111428687344, 1827317023092830201950080, -89946874545119714361987192509568, -9262235489215916508714844705185660161280
Offset: 0
A(x) = x - 6/2!*x^2 + 142/3!*x^3 + 31800/4!*x^4 - 159468264/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(8*x)/2! + A(x)*A(8*x)*A(8^2*x)/3! +
A(x)*A(8*x)*A(8^2*x)*A(8^3*x)/4! + ...
Let G(x) be the g.f. of A111836 (column 1 of A111835), then
G(x) = 1 + 8*A(x) + 8^2*A(x)*A(8*x)/2! +
8^3*A(x)*A(8*x)*A(8^2*x)/3! +
8^4*A(x)*A(8*x)*A(8^2*x)*A(8^3*x)/4! + ...
-
{a(n,q=8)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111819
Column 0 of the matrix logarithm (A111818) of triangle A078536, which shifts columns left and up under matrix 4th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -2, 2, 840, -76056, -158761104, 390564896784, 14713376473366656, -783793232940393380736, -571732910947761663424746240, 603368029500890443054004423520000, 8390120127886533420753746115877557580800
Offset: 0
A(x) = x - 2/2!*x^2 + 2/3!*x^3 + 840/4!*x^4 - 76056/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(4*x)/2! + A(x)*A(4*x)*A(4^2*x)/3! +
A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ...
Let G(x) be the g.f. of A111817 (column 1 of A078536), then
G(x) = 1 + 4*A(x) + 4^2*A(x)*A(4*x)/2! +
4^3*A(x)*A(4*x)*A(4^2*x)/3! +
4^4*A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ...
-
{a(n,q=4)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111844
Column 0 of the matrix logarithm (A111843) of triangle A111840, which shifts columns left and up under matrix cube; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, 3, 27, 486, 7776, -2423196, -97338996, 5883879500784, 548540050402080, -1737375315124971951360, -405928706169160555680960, 60788545124934395018363657569920, 36207408592259278909089966337224960, -237458310218887960183820317532070376189904640
Offset: 0
E.g.f. A(x) = x + 3/2!*x^2 + 27/3!*x^3 + 486/4!*x^4 + 7776/5!*x^5
- 2423196/6!*x^6 - 97338996/7!*x^7 +...
where A(x) satisfies:
x = A(x) - A(x)*A(3*x)/2! + A(x)*A(3*x)*A(3^2*x)/3!
- A(x)*A(3*x)*A(3^2*x)*A(3^3*x)/4! + ...
also:
Let G(x) be the g.f. of A111841 (column 0 of A111840), then
G(x) = 1 + x + 3*x^2 + 18*x^3 + 216*x^4 + 5589*x^5 + 336555*x^6 +...
= 1 + A(x) + A(x)*A(3*x)/2! + A(x)*A(3*x)*A(3^2*x)/3!
+ A(x)*A(3*x)*A(3^2*x)*A(3^3*x)/4! +...
-
{a(n,q=3)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=(A^q)[i-1,1], B[i,j]=(A^q)[i-1,j-1]));));A=B); B=sum(i=1,#A,-(A^0-A)^i/i);return(n!*B[n+1,1]))}
Showing 1-8 of 8 results.
Comments