A111813 Matrix log of triangle A078121, which shifts columns left and up under matrix square; these terms are the result of multiplying each element in row n and column k by (n-k)!.
0, 1, 0, 0, 2, 0, -2, 0, 4, 0, 0, -4, 0, 8, 0, 216, 0, -8, 0, 16, 0, 0, 432, 0, -16, 0, 32, 0, -568464, 0, 864, 0, -32, 0, 64, 0, 0, -1136928, 0, 1728, 0, -64, 0, 128, 0, 36058658688, 0, -2273856, 0, 3456, 0, -128, 0, 256, 0, 0, 72117317376, 0, -4547712, 0, 6912, 0, -256, 0, 512, 0
Offset: 0
Examples
Matrix log of A078121, with factorial denominators, begins: 0; 1/1!, 0; 0/2!, 2/1!, 0; -2/3!, 0/2!, 4/1!, 0; 0/4!, -4/3!, 0/2!, 8/1!, 0; 216/5!, 0/4!, -8/3!, 0/2!, 16/1!, 0; 0/6!, 432/5!, 0/4!, -16/3!, 0/2!, 32/1!, 0; -568464/7!, 0/6!, 864/5!, 0/4!, -32/3!, 0/2!, 64/1!, 0; ...
Crossrefs
Programs
-
PARI
T(n,k,q=2)=local(A=Mat(1),B);if(n
Formula
T(n, k) = 2^k*T(n-k, 0) = A111814(n-k) for n>=k>=0.
Comments