cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A111814 Column 0 of the matrix logarithm (A111813) of triangle A078121, which shifts columns left and up under matrix square; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, 0, -2, 0, 216, 0, -568464, 0, 36058658688, 0, -53694310935340800, 0, 1790669979087018171448320, 0, -1280832788659041410080025283840000, 0, 18961468161294510864200732026858464699187200, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Surprisingly, the e.g.f. A(x) is an odd function: A(-x) = -A(x). Let q=2; the g.f. of column k of A078121^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			E.g.f.: A(x) = x - 2/3!*x^3 + 216/5!*x^5 - 568464/7!*x^7 + ...
where A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(2*x)/2! + A(x)*A(2*x)*A(2^2*x)/3!
+ A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
also:
x/(1-x^2) = A(x) + A(x)*A(2*x)*A(2^2*x)/3!
+ A(x)*A(2*x)*A(2^2*x)*A(2^3*x)*A(2^4*x)/5! + ...
Let G(x) be the g.f. of A002577 (column 1 of A078121), then
G(x) = 1 + 2*A(x) + 2^2*A(x)*A(2*x)/2! +
2^3*A(x)*A(2*x)*A(2^2*x)/3! +
2^4*A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
		

Crossrefs

Cf. A078121 (triangle), A002577, A111813 (matrix log); A110505 (q=-1), A111816 (q=3), A111819 (q=4), A111824 (q=5), A111829 (q=6), A111834 (q=7), A111839 (q=8).

Programs

  • PARI
    {a(n,q=2)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}

Formula

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(2^j*x)/(j+1). E.g.f. satisfies: x/(1-x^2) = Sum_{n>=1}Prod_{j=0..2*n}A(2^j*x)/(j+1).

A111815 Matrix log of triangle A078122, which shifts columns left and up under matrix cube; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -1, 3, 0, -3, -3, 9, 0, 150, -9, -9, 27, 0, 1236, 450, -27, -27, 81, 0, -2555748, 3708, 1350, -81, -81, 243, 0, -64342116, -7667244, 11124, 4050, -243, -243, 729, 0, 5885700899760, -193026348, -23001732, 33372, 12150, -729, -729, 2187, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 3^k multiplied by column 0 (A111816) when ignoring zeros above the diagonal.

Examples

			Matrix log of A078122, with factorial denominators, begins:
0;
1/1!, 0;
-1/2!, 3/1!, 0;
-3/3!, -3/2!, 9/1!, 0;
150/4!, -9/3!, -9/2!, 27/1!, 0;
1236/5!, 450/4!, -27/3!, -27/2!, 81/1!, 0;
-2555748/6!, 3708/5!, 1350/4!, -81/3!, -81/2!, 243/1!, 0; ...
		

Crossrefs

Cf. A078122, A111816 (column 0), A111840 (variant); log matrices: A110504 (q=-1), A111813 (q=2), A111818 (q=4), A111823 (q=5), A111828 (q=6), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=3)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 3^k*T(n-k, 0) = A111816(n-k) for n>=k>=0.

A111818 Matrix log of triangle A078536, which shifts columns left and up under matrix 4th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -2, 4, 0, 2, -8, 16, 0, 840, 8, -32, 64, 0, -76056, 3360, 32, -128, 256, 0, -158761104, -304224, 13440, 128, -512, 1024, 0, 390564896784, -635044416, -1216896, 53760, 512, -2048, 4096, 0, 14713376473366656, 1562259587136, -2540177664, -4867584, 215040, 2048, -8192, 16384, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 4^k multiplied by column 0 (A111819) when ignoring zeros above the diagonal.

Examples

			Matrix log of A078536, with factorial denominators, begins:
0;
1/1!, 0;
-2/2!, 4/1!, 0;
2/3!, -8/2!, 16/1!, 0;
840/4!, 8/3!, -32/2!, 64/1!, 0;
-76056/5!, 3360/4!, 32/3!, -128/2!, 256/1!, 0;
-158761104/6!, -304224/5!, 13440/4!, 128/3!, -512/2!, 1024/1!, 0;
		

Crossrefs

Cf. A078536, A111819 (column 0), A111845 (variant); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111823 (q=5), A111828 (q=6), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=4)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 4^k*T(n-k, 0) = A111819(n-k) for n>=k>=0.

A111823 Matrix log of triangle A111820, which shifts columns left and up under matrix 5th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -3, 5, 0, 16, -15, 25, 0, 2814, 80, -75, 125, 0, -1092180, 14070, 400, -375, 625, 0, -3603928080, -5460900, 70350, 2000, -1875, 3125, 0, 58978973128440, -18019640400, -27304500, 351750, 10000, -9375, 15625, 0, 5974833380453777520
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 5^k multiplied by column 0 (A111824) when ignoring zeros above the diagonal.

Examples

			Matrix log of A111820, with factorial denominators, begins:
0;
1/1!, 0;
-3/2!, 5/1!, 0;
16/3!, -15/2!, 25/1!, 0;
2814/4!, 80/3!, -75/2!, 125/1!, 0;
-1092180/5!, 14070/4!, 400/3!, -375/2!, 625/1!, 0; ...
		

Crossrefs

Cf. A111820, A111824 (column 0); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111818 (q=4), A111828 (q=6), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=5)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 5^k*T(n-k, 0) = A111824(n-k) for n>=k>=0.

A111828 Matrix log of triangle A111825, which shifts columns left and up under matrix 6th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -4, 6, 0, 42, -24, 36, 0, 7296, 252, -144, 216, 0, -7931976, 43776, 1512, -864, 1296, 0, -45557382240, -47591856, 262656, 9072, -5184, 7776, 0, 3064554175021200, -273344293440, -285551136, 1575936, 54432, -31104, 46656, 0, 801993619807364206080
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 6^k multiplied by column 0 (A111829) when ignoring zeros above the diagonal.

Examples

			Matrix log of A111825, with factorial denominators, begins:
0;
1/1!, 0;
-4/2!, 6/1!, 0;
42/3!, -24/2!, 36/1!, 0;
7296/4!, 252/3!, -144/2!, 216/1!, 0;
-7931976/5!, 43776/4!, 1512/3!, -864/2!, 1296/1!, 0; ...
		

Crossrefs

Cf. A111825, A111829 (column 0); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111818 (q=4), A111823 (q=5), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=6)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 6^k*T(n-k, 0) = A111829(n-k) for n>=k>=0.

A111833 Matrix log of triangle A111830, which shifts columns left and up under matrix 7th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -5, 7, 0, 83, -35, 49, 0, 16110, 581, -245, 343, 0, -40097784, 112770, 4067, -1715, 2401, 0, -388036363380, -280684488, 789390, 28469, -12005, 16807, 0, 82804198261002036, -2716254543660, -1964791416, 5525730, 199283, -84035, 117649, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 7^k multiplied by column 0 (A111834) when ignoring zeros above the diagonal.

Examples

			Matrix log of A111830, with factorial denominators, begins:
0;
1/1!, 0;
-5/2!, 7/1!, 0;
83/3!, -35/2!, 49/1!, 0;
16110/4!, 581/3!, -245/2!, 343/1!, 0;
-40097784/5!, 112770/4!, 4067/3!, -1715/2!, 2401/1!, 0; ...
		

Crossrefs

Cf. A111830, A111834 (column 0); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111818 (q=4), A111823 (q=5), A111828 (q=6), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=7)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 7^k*T(n-k, 0) = A111834(n-k) for n>=k>=0.

A111838 Matrix log of triangle A111835, which shifts columns left and up under matrix 8th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -6, 8, 0, 142, -48, 64, 0, 31800, 1136, -384, 512, 0, -159468264, 254400, 9088, -3072, 4096, 0, -2481298801008, -1275746112, 2035200, 72704, -24576, 32768, 0, 1414130111428687344, -19850390408064, -10205968896, 16281600, 581632, -196608, 262144, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 8^k multiplied by column 0 (A111839) when ignoring zeros above the diagonal.

Examples

			Matrix log of A111835, with factorial denominators, begins:
0;
1/1!, 0;
-6/2!, 8/1!, 0;
142/3!, -48/2!, 64/1!, 0;
31800/4!, 1136/3!, -384/2!, 512/1!, 0;
-159468264/5!, 254400/4!, 9088/3!, -3072/2!, 4096/1!, 0; ...
		

Crossrefs

Cf. A111835, A111839 (column 0); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111818 (q=4), A111823 (q=5), A111828 (q=6), A111833 (q=7).

Programs

  • PARI
    T(n,k,q=8)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 8^k*T(n-k, 0) = A111839(n-k) for n>=k>=0.

A111810 Matrix log of triangle A098539, which shifts columns left and up under matrix square; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, 2, 2, 0, 10, 4, 4, 0, 88, 20, 8, 8, 0, 1096, 176, 40, 16, 16, 0, 11856, 2192, 352, 80, 32, 32, 0, -402480, 23712, 4384, 704, 160, 64, 64, 0, -1891968, -804960, 47424, 8768, 1408, 320, 128, 128, 0, 36024603264, -3783936, -1609920, 94848, 17536, 2816, 640, 256, 256, 0
Offset: 0

Views

Author

Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 2^k times column 0 (A111811) when ignoring zeros above the diagonal.

Examples

			Matrix log of A098539, with factorial denominators, begins:
0;
1/1!, 0;
2/2!, 2/1!, 0;
10/3!, 4/2!, 4/1!, 0;
88/4!, 20/3!, 8/2!, 8/1!, 0;
1096/5!, 176/4!, 40/3!, 16/2!, 16/1!, 0;
11856/6!, 2192/5!, 352/4!, 80/3!, 32/2!, 32/1!, 0; ...
		

Crossrefs

Cf. A098539 (triangle), A111811 (column 0), A111813 (variant), A111941 (q=-1), A111843 (q=3), A111848 (q=4).

Programs

  • PARI
    T(n,k,q=2)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 2^k*T(n-k, 0) = 2^k*A111811(n-k) for n>=k>=0.
Showing 1-8 of 8 results.