cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A111824 Column 0 of the matrix logarithm (A111823) of triangle A111820, which shifts columns left and up under matrix 5th power; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, -3, 16, 2814, -1092180, -3603928080, 58978973128440, 5974833380453777520, -3294186866481455009752320, -10279982482873484428390722523200, 175129088125361734252730927280177244800
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Let q=5; the g.f. of column k of A111820^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			A(x) = x - 3/2!*x^2 + 16/3!*x^3 + 2814/4!*x^4 - 1092180/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(5*x)/2! + A(x)*A(5*x)*A(5^2*x)/3! +
A(x)*A(5*x)*A(5^2*x)*A(5^3*x)/4! + ...
Let G(x) be the g.f. of A111821 (column 1 of A111820), then
G(x) = 1 + 5*A(x) + 5^2*A(x)*A(5*x)/2! +
5^3*A(x)*A(5*x)*A(5^2*x)/3! +
5^4*A(x)*A(5*x)*A(5^2*x)*A(5^3*x)/4! + ...
		

Crossrefs

Cf. A111820 (triangle), A111821, A111823 (matrix log); A110505 (q=-1), A111814 (q=2), A111816 (q=3), A111819 (q=4), A111829 (q=6), A111834 (q=7), A111839 (q=8).

Programs

  • PARI
    {a(n,q=5)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}

Formula

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(5^j*x)/(j+1).

A111813 Matrix log of triangle A078121, which shifts columns left and up under matrix square; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, 0, 2, 0, -2, 0, 4, 0, 0, -4, 0, 8, 0, 216, 0, -8, 0, 16, 0, 0, 432, 0, -16, 0, 32, 0, -568464, 0, 864, 0, -32, 0, 64, 0, 0, -1136928, 0, 1728, 0, -64, 0, 128, 0, 36058658688, 0, -2273856, 0, 3456, 0, -128, 0, 256, 0, 0, 72117317376, 0, -4547712, 0, 6912, 0, -256, 0, 512, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 2^k multiplied by column 0 (A111814) when ignoring zeros above the diagonal.

Examples

			Matrix log of A078121, with factorial denominators, begins:
0;
1/1!, 0;
0/2!, 2/1!, 0;
-2/3!, 0/2!, 4/1!, 0;
0/4!, -4/3!, 0/2!, 8/1!, 0;
216/5!, 0/4!, -8/3!, 0/2!, 16/1!, 0;
0/6!, 432/5!, 0/4!, -16/3!, 0/2!, 32/1!, 0;
-568464/7!, 0/6!, 864/5!, 0/4!, -32/3!, 0/2!, 64/1!, 0; ...
		

Crossrefs

Cf. A078121, A111814 (column 0), A111810 (variant); log matrices: A110504 (q=-1), A111815 (q=3), A111818 (q=4), A111823 (q=5), A111828 (q=6), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=2)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 2^k*T(n-k, 0) = A111814(n-k) for n>=k>=0.

A111815 Matrix log of triangle A078122, which shifts columns left and up under matrix cube; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -1, 3, 0, -3, -3, 9, 0, 150, -9, -9, 27, 0, 1236, 450, -27, -27, 81, 0, -2555748, 3708, 1350, -81, -81, 243, 0, -64342116, -7667244, 11124, 4050, -243, -243, 729, 0, 5885700899760, -193026348, -23001732, 33372, 12150, -729, -729, 2187, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 3^k multiplied by column 0 (A111816) when ignoring zeros above the diagonal.

Examples

			Matrix log of A078122, with factorial denominators, begins:
0;
1/1!, 0;
-1/2!, 3/1!, 0;
-3/3!, -3/2!, 9/1!, 0;
150/4!, -9/3!, -9/2!, 27/1!, 0;
1236/5!, 450/4!, -27/3!, -27/2!, 81/1!, 0;
-2555748/6!, 3708/5!, 1350/4!, -81/3!, -81/2!, 243/1!, 0; ...
		

Crossrefs

Cf. A078122, A111816 (column 0), A111840 (variant); log matrices: A110504 (q=-1), A111813 (q=2), A111818 (q=4), A111823 (q=5), A111828 (q=6), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=3)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 3^k*T(n-k, 0) = A111816(n-k) for n>=k>=0.

A111818 Matrix log of triangle A078536, which shifts columns left and up under matrix 4th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -2, 4, 0, 2, -8, 16, 0, 840, 8, -32, 64, 0, -76056, 3360, 32, -128, 256, 0, -158761104, -304224, 13440, 128, -512, 1024, 0, 390564896784, -635044416, -1216896, 53760, 512, -2048, 4096, 0, 14713376473366656, 1562259587136, -2540177664, -4867584, 215040, 2048, -8192, 16384, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 4^k multiplied by column 0 (A111819) when ignoring zeros above the diagonal.

Examples

			Matrix log of A078536, with factorial denominators, begins:
0;
1/1!, 0;
-2/2!, 4/1!, 0;
2/3!, -8/2!, 16/1!, 0;
840/4!, 8/3!, -32/2!, 64/1!, 0;
-76056/5!, 3360/4!, 32/3!, -128/2!, 256/1!, 0;
-158761104/6!, -304224/5!, 13440/4!, 128/3!, -512/2!, 1024/1!, 0;
		

Crossrefs

Cf. A078536, A111819 (column 0), A111845 (variant); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111823 (q=5), A111828 (q=6), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=4)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 4^k*T(n-k, 0) = A111819(n-k) for n>=k>=0.

A111828 Matrix log of triangle A111825, which shifts columns left and up under matrix 6th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -4, 6, 0, 42, -24, 36, 0, 7296, 252, -144, 216, 0, -7931976, 43776, 1512, -864, 1296, 0, -45557382240, -47591856, 262656, 9072, -5184, 7776, 0, 3064554175021200, -273344293440, -285551136, 1575936, 54432, -31104, 46656, 0, 801993619807364206080
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 6^k multiplied by column 0 (A111829) when ignoring zeros above the diagonal.

Examples

			Matrix log of A111825, with factorial denominators, begins:
0;
1/1!, 0;
-4/2!, 6/1!, 0;
42/3!, -24/2!, 36/1!, 0;
7296/4!, 252/3!, -144/2!, 216/1!, 0;
-7931976/5!, 43776/4!, 1512/3!, -864/2!, 1296/1!, 0; ...
		

Crossrefs

Cf. A111825, A111829 (column 0); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111818 (q=4), A111823 (q=5), A111833 (q=7), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=6)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 6^k*T(n-k, 0) = A111829(n-k) for n>=k>=0.

A111833 Matrix log of triangle A111830, which shifts columns left and up under matrix 7th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -5, 7, 0, 83, -35, 49, 0, 16110, 581, -245, 343, 0, -40097784, 112770, 4067, -1715, 2401, 0, -388036363380, -280684488, 789390, 28469, -12005, 16807, 0, 82804198261002036, -2716254543660, -1964791416, 5525730, 199283, -84035, 117649, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 7^k multiplied by column 0 (A111834) when ignoring zeros above the diagonal.

Examples

			Matrix log of A111830, with factorial denominators, begins:
0;
1/1!, 0;
-5/2!, 7/1!, 0;
83/3!, -35/2!, 49/1!, 0;
16110/4!, 581/3!, -245/2!, 343/1!, 0;
-40097784/5!, 112770/4!, 4067/3!, -1715/2!, 2401/1!, 0; ...
		

Crossrefs

Cf. A111830, A111834 (column 0); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111818 (q=4), A111823 (q=5), A111828 (q=6), A111838 (q=8).

Programs

  • PARI
    T(n,k,q=7)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 7^k*T(n-k, 0) = A111834(n-k) for n>=k>=0.

A111838 Matrix log of triangle A111835, which shifts columns left and up under matrix 8th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -6, 8, 0, 142, -48, 64, 0, 31800, 1136, -384, 512, 0, -159468264, 254400, 9088, -3072, 4096, 0, -2481298801008, -1275746112, 2035200, 72704, -24576, 32768, 0, 1414130111428687344, -19850390408064, -10205968896, 16281600, 581632, -196608, 262144, 0
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Column k equals 8^k multiplied by column 0 (A111839) when ignoring zeros above the diagonal.

Examples

			Matrix log of A111835, with factorial denominators, begins:
0;
1/1!, 0;
-6/2!, 8/1!, 0;
142/3!, -48/2!, 64/1!, 0;
31800/4!, 1136/3!, -384/2!, 512/1!, 0;
-159468264/5!, 254400/4!, 9088/3!, -3072/2!, 4096/1!, 0; ...
		

Crossrefs

Cf. A111835, A111839 (column 0); log matrices: A110504 (q=-1), A111813 (q=2), A111815 (q=3), A111818 (q=4), A111823 (q=5), A111828 (q=6), A111833 (q=7).

Programs

  • PARI
    T(n,k,q=8)=local(A=Mat(1),B);if(n
    				

Formula

T(n, k) = 8^k*T(n-k, 0) = A111839(n-k) for n>=k>=0.

A111820 Triangle P, read by rows, that satisfies [P^5](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(5*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 55, 25, 1, 1, 2055, 1525, 125, 1, 1, 291430, 311525, 38875, 625, 1, 1, 165397680, 239305275, 40338875, 975625, 3125, 1, 1, 390075741430, 735920617775, 157056792000, 5077475625, 24409375, 15625, 1
Offset: 0

Views

Author

Gottfried Helms and Paul D. Hanna, Aug 22 2005

Keywords

Comments

Also P(n,k) = the partitions of (5^n - 5^(n-k)) into powers of 5 <= 5^(n-k).

Examples

			Let q=5; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 3/2!*x^2 + 16/3!*x^3 + 2814/4!*x^4 +... (A111824).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(5*x) + m^3/3!*L(x)*L(5*x)*L(5^2*x) +
m^4/4!*L(x)*L(5*x)*L(5^2*x)*L(5^3*x) + ...
Triangle P begins:
1;
1,1;
1,5,1;
1,55,25,1;
1,2055,1525,125,1;
1,291430,311525,38875,625,1;
1,165397680,239305275,40338875,975625,3125,1; ...
where P^5 shifts columns left and up one place:
1;
5,1;
55,25,1;
2055,1525,125,1;
291430,311525,38875,625,1; ...
		

Crossrefs

Cf. A111821 (column 1), A111822 (row sums), A111823 (matrix log); triangles: A110503 (q=-1), A078121 (q=2), A078122 (q=3), A078536 (q=4), A111825 (q=6), A111830 (q=7), A111835 (q=8).

Programs

  • PARI
    P(n,k,q=5)=local(A=Mat(1),B);if(n
    				

Formula

Let q=5; the g.f. of column k of P^m (ignoring leading zeros) equals: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} L(q^j*x) where L(x) satisfies: x/(1-x) = Sum_{n>=1} Product_{j=0..n-1} L(q^j*x)/(j+1) and L(x) equals the g.f. of column 0 of the matrix log of P (A111824).
Showing 1-8 of 8 results.