A111819 Column 0 of the matrix logarithm (A111818) of triangle A078536, which shifts columns left and up under matrix 4th power; these terms are the result of multiplying the element in row n by n!.
0, 1, -2, 2, 840, -76056, -158761104, 390564896784, 14713376473366656, -783793232940393380736, -571732910947761663424746240, 603368029500890443054004423520000, 8390120127886533420753746115877557580800
Offset: 0
Keywords
Examples
A(x) = x - 2/2!*x^2 + 2/3!*x^3 + 840/4!*x^4 - 76056/5!*x^5 +... where e.g.f. A(x) satisfies: x/(1-x) = A(x) + A(x)*A(4*x)/2! + A(x)*A(4*x)*A(4^2*x)/3! + A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ... Let G(x) be the g.f. of A111817 (column 1 of A078536), then G(x) = 1 + 4*A(x) + 4^2*A(x)*A(4*x)/2! + 4^3*A(x)*A(4*x)*A(4^2*x)/3! + 4^4*A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ...
Crossrefs
Programs
-
PARI
{a(n,q=4)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
Formula
E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(4^j*x)/(j+1).
Comments