A111814
Column 0 of the matrix logarithm (A111813) of triangle A078121, which shifts columns left and up under matrix square; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, 0, -2, 0, 216, 0, -568464, 0, 36058658688, 0, -53694310935340800, 0, 1790669979087018171448320, 0, -1280832788659041410080025283840000, 0, 18961468161294510864200732026858464699187200, 0
Offset: 0
E.g.f.: A(x) = x - 2/3!*x^3 + 216/5!*x^5 - 568464/7!*x^7 + ...
where A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(2*x)/2! + A(x)*A(2*x)*A(2^2*x)/3!
+ A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
also:
x/(1-x^2) = A(x) + A(x)*A(2*x)*A(2^2*x)/3!
+ A(x)*A(2*x)*A(2^2*x)*A(2^3*x)*A(2^4*x)/5! + ...
Let G(x) be the g.f. of A002577 (column 1 of A078121), then
G(x) = 1 + 2*A(x) + 2^2*A(x)*A(2*x)/2! +
2^3*A(x)*A(2*x)*A(2^2*x)/3! +
2^4*A(x)*A(2*x)*A(2^2*x)*A(2^3*x)/4! + ...
-
{a(n,q=2)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111816
Column 0 of the matrix logarithm (A111815) of triangle A078122, which shifts columns left and up under matrix cube; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -1, -3, 150, 1236, -2555748, -64342116, 5885700899760, 442646611978752, -1737387344860364226240, -367706581563500487774720, 60788555325888838346137808787840, 34626906551623392401873575206240000, -237458311254822429335982538087618909465992960
Offset: 0
E.g.f.: A(x) = x - 1/2!*x^2 - 3/3!*x^3 + 150/4!*x^4 + 1236/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(3*x)/2! + A(x)*A(3*x)*A(3^2*x)/3! +
A(x)*A(3*x)*A(3^2*x)*A(3^3*x)/4! + ...
Let G(x) be the g.f. of A078124 (column 1 of A078122), then
G(x) = 1 + 3*A(x) + 3^2*A(x)*A(3*x)/2! +
3^3*A(x)*A(3*x)*A(3^2*x)/3! +
3^4*A(x)*A(3*x)*A(3^2*x)*A(3^3*x)/4! + ...
-
{a(n,q=3)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111824
Column 0 of the matrix logarithm (A111823) of triangle A111820, which shifts columns left and up under matrix 5th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -3, 16, 2814, -1092180, -3603928080, 58978973128440, 5974833380453777520, -3294186866481455009752320, -10279982482873484428390722523200, 175129088125361734252730927280177244800
Offset: 0
A(x) = x - 3/2!*x^2 + 16/3!*x^3 + 2814/4!*x^4 - 1092180/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(5*x)/2! + A(x)*A(5*x)*A(5^2*x)/3! +
A(x)*A(5*x)*A(5^2*x)*A(5^3*x)/4! + ...
Let G(x) be the g.f. of A111821 (column 1 of A111820), then
G(x) = 1 + 5*A(x) + 5^2*A(x)*A(5*x)/2! +
5^3*A(x)*A(5*x)*A(5^2*x)/3! +
5^4*A(x)*A(5*x)*A(5^2*x)*A(5^3*x)/4! + ...
-
{a(n,q=5)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111829
Column 0 of the matrix logarithm (A111828) of triangle A111825, which shifts columns left and up under matrix 6th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -4, 42, 7296, -7931976, -45557382240, 3064554175021200, 801993619807364206080, -2618439032548254776387771520, -30580166025709706974876961026475520, 4440597519115996836838709580481861376121600
Offset: 0
A(x) = x - 4/2!*x^2 + 42/3!*x^3 + 7296/4!*x^4 - 7931976/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(6*x)/2! + A(x)*A(6*x)*A(6^2*x)/3! +
A(x)*A(6*x)*A(6^2*x)*A(6^3*x)/4! + ...
Let G(x) be the g.f. of A111826 (column 1 of A111825), then
G(x) = 1 + 6*A(x) + 6^2*A(x)*A(6*x)/2! +
6^3*A(x)*A(6*x)*A(6^2*x)/3! +
6^4*A(x)*A(6*x)*A(6^2*x)*A(6^3*x)/4! + ...
-
{a(n,q=6)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111833
Matrix log of triangle A111830, which shifts columns left and up under matrix 7th power; these terms are the result of multiplying each element in row n and column k by (n-k)!.
Original entry on oeis.org
0, 1, 0, -5, 7, 0, 83, -35, 49, 0, 16110, 581, -245, 343, 0, -40097784, 112770, 4067, -1715, 2401, 0, -388036363380, -280684488, 789390, 28469, -12005, 16807, 0, 82804198261002036, -2716254543660, -1964791416, 5525730, 199283, -84035, 117649, 0
Offset: 0
Matrix log of A111830, with factorial denominators, begins:
0;
1/1!, 0;
-5/2!, 7/1!, 0;
83/3!, -35/2!, 49/1!, 0;
16110/4!, 581/3!, -245/2!, 343/1!, 0;
-40097784/5!, 112770/4!, 4067/3!, -1715/2!, 2401/1!, 0; ...
A111839
Column 0 of the matrix logarithm (A111838) of triangle A111835, which shifts columns left and up under matrix 8th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -6, 142, 31800, -159468264, -2481298801008, 1414130111428687344, 1827317023092830201950080, -89946874545119714361987192509568, -9262235489215916508714844705185660161280
Offset: 0
A(x) = x - 6/2!*x^2 + 142/3!*x^3 + 31800/4!*x^4 - 159468264/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(8*x)/2! + A(x)*A(8*x)*A(8^2*x)/3! +
A(x)*A(8*x)*A(8^2*x)*A(8^3*x)/4! + ...
Let G(x) be the g.f. of A111836 (column 1 of A111835), then
G(x) = 1 + 8*A(x) + 8^2*A(x)*A(8*x)/2! +
8^3*A(x)*A(8*x)*A(8^2*x)/3! +
8^4*A(x)*A(8*x)*A(8^2*x)*A(8^3*x)/4! + ...
-
{a(n,q=8)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111819
Column 0 of the matrix logarithm (A111818) of triangle A078536, which shifts columns left and up under matrix 4th power; these terms are the result of multiplying the element in row n by n!.
Original entry on oeis.org
0, 1, -2, 2, 840, -76056, -158761104, 390564896784, 14713376473366656, -783793232940393380736, -571732910947761663424746240, 603368029500890443054004423520000, 8390120127886533420753746115877557580800
Offset: 0
A(x) = x - 2/2!*x^2 + 2/3!*x^3 + 840/4!*x^4 - 76056/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(4*x)/2! + A(x)*A(4*x)*A(4^2*x)/3! +
A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ...
Let G(x) be the g.f. of A111817 (column 1 of A078536), then
G(x) = 1 + 4*A(x) + 4^2*A(x)*A(4*x)/2! +
4^3*A(x)*A(4*x)*A(4^2*x)/3! +
4^4*A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ...
-
{a(n,q=4)=local(A=x/(1-x+x*O(x^n)));for(i=1,n, A=x/(1-x)/(1+sum(j=1,n,prod(k=1,j,subst(A,x,q^k*x))/(j+1)!))); return(n!*polcoeff(A,n))}
A111830
Triangle P, read by rows, that satisfies [P^7](n,k) = P(n+1,k+1) for n>=k>=0, also [P^(7*m)](n,k) = [P^m](n+1,k+1) for all m, where [P^m](n,k) denotes the element at row n, column k, of the matrix power m of P, with P(0,k)=1 and P(k,k)=1 for all k>=0.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 154, 49, 1, 1, 16275, 8281, 343, 1, 1, 9106461, 6558209, 410914, 2401, 1, 1, 28543862991, 27307109501, 2298650515, 20170801, 16807, 1, 1, 521136519414483, 636922972420469, 67522139062441, 790856748801, 988621354
Offset: 0
Let q=7; the g.f. of column k of matrix power P^m is:
1 + (m*q^k)*L(x) + (m*q^k)^2/2!*L(x)*L(q*x) +
(m*q^k)^3/3!*L(x)*L(q*x)*L(q^2*x) +
(m*q^k)^4/4!*L(x)*L(q*x)*L(q^2*x)*L(q^3*x) + ...
where L(x) satisfies:
x/(1-x) = L(x) + L(x)*L(q*x)/2! + L(x)*L(q*x)*L(q^2*x)/3! + ...
and L(x) = x - 5/2!*x^2 + 83/3!*x^3 + 16110/4!*x^4 +... (A111834).
Thus the g.f. of column 0 of matrix power P^m is:
1 + m*L(x) + m^2/2!*L(x)*L(7*x) + m^3/3!*L(x)*L(7*x)*L(7^2*x) +
m^4/4!*L(x)*L(7*x)*L(7^2*x)*L(7^3*x) + ...
Triangle P begins:
1;
1,1;
1,7,1;
1,154,49,1;
1,16275,8281,343,1;
1,9106461,6558209,410914,2401,1;
1,28543862991,27307109501,2298650515,20170801,16807,1; ...
where P^7 shifts columns left and up one place:
1;
7,1;
154,49,1;
16275,8281,343,1; ...
Showing 1-8 of 8 results.
Comments