A111863 a(n) is the smallest prime factor of 6*n-1 that is congruent to 5 modulo 6.
5, 11, 17, 23, 29, 5, 41, 47, 53, 59, 5, 71, 11, 83, 89, 5, 101, 107, 113, 17, 5, 131, 137, 11, 149, 5, 23, 167, 173, 179, 5, 191, 197, 29, 11, 5, 17, 227, 233, 239, 5, 251, 257, 263, 269, 5, 281, 41, 293, 23, 5, 311, 317, 17, 47, 5, 11, 347, 353, 359, 5, 53, 29, 383, 389, 5
Offset: 1
Examples
For n = 13, 6*n - 1 = 77 = 7*11; 7 == 1 (mod 6), but 11 == 5 (mod 6), so a(13) = 11.
References
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part Eight, Chap. 2, Section 2, Problem 96.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= n -> min(select(p -> p mod 6 = 5, numtheory:-factorset(6*n-1))): map(f, [$1..100]); # Robert Israel, Jan 18 2023
-
PARI
for(k=1,60,my(f=factor(6*k-1)[,1]);for(j=1,#f,if(f[j]%6==5,print1(f[j],", ");break))) \\ Hugo Pfoertner, Dec 25 2019
Comments