cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A016969 a(n) = 6*n + 5.

Original entry on oeis.org

5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, 215, 221, 227, 233, 239, 245, 251, 257, 263, 269, 275, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(18).
Exponents e such that x^e + x - 1 is reducible.
First differences of A141631. - Paul Curtz, Sep 12 2008
a(n-1), n >= 1, appears as first column in the triangle A239127 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
Odd unlucky numbers in A050505. - Fred Daniel Kline, Feb 25 2017
Intersection of A005408 and A016789. - Bruno Berselli, Apr 26 2018
Numbers that are not divisible by their digital root in base 4. - Amiram Eldar, Nov 24 2022

Crossrefs

Cf. A050505 (unlucky numbers).
Cf. A000217.

Programs

Formula

a(n) = A003415(A003415(A125200(n+1)))/2. - Reinhard Zumkeller, Nov 24 2006
A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A007310(2*n+1); complement of A016921 with respect to A007310. - Reinhard Zumkeller, Oct 02 2008
From Klaus Brockhaus, Jan 04 2009: (Start)
G.f.: (5+x)/(1-x)^2.
a(0) = 5; for n > 0, a(n) = a(n-1)+6. (End)
a(n) = A016921(n)+4 = A016933(n)+3 = A016945(n)+2 = A016957(n)+1. - Klaus Brockhaus, Jan 04 2009
a(n) = floor((12n-1)/2) with offset 1..a(1)=5. - Gary Detlefs, Mar 07 2010
a(n) = 4*(3*n+1) - a(n-1) (with a(0) = 5). - Vincenzo Librandi, Nov 20 2010
a(n) = floor(1/(1/sin(1/n) - n)). - Clark Kimberling, Feb 19 2010
a(n) = 3*Sum_{k = 0..n} binomial(6*n+5, 6*k+2)*Bernoulli(6*k+2). - Michel Marcus, Jan 11 2016
a(n) = A049452(n+1) / (n+1). - Torlach Rush, Nov 23 2018
a(n) = 2*A000217(n+2) - 1 - 2*A000217(n-1). See Twin Triangular Frames illustration. - Leo Tavares, Aug 25 2021
Sum_{n>=0} (-1)^n/a(n) = Pi/6 - sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021
E.g.f.: exp(x)*(5 + 6*x). - Stefano Spezia, Feb 14 2025

Extensions

More terms from Klaus Brockhaus, Jan 04 2009

A107745 Smallest prime factor of 6*n-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 5, 41, 47, 53, 59, 5, 71, 7, 83, 89, 5, 101, 107, 113, 7, 5, 131, 137, 11, 149, 5, 7, 167, 173, 179, 5, 191, 197, 7, 11, 5, 13, 227, 233, 239, 5, 251, 257, 263, 269, 5, 281, 7, 293, 13, 5, 311, 317, 17, 7, 5, 11, 347, 353, 359, 5, 7, 13, 383, 389, 5, 401, 11
Offset: 1

Views

Author

Zak Seidov, May 23 2005

Keywords

Comments

If 6*n-1 is prime, a(n) = 6*n-1.

Crossrefs

Cf. A107744 (smallest prime factor of 6*n+1), A107746 (values of k such that A107744(k) > A107745(k)), A107747 (values of k such that A107744(k) < A107745(k)).

Programs

  • Magma
    [Min(PrimeFactors(6*n-1)):n in[1..68]]; // Jason Kimberley, Oct 28 2015
  • Mathematica
    a[n_]:= FactorInteger[6*n - 1][[1, 1]]; Array[a, 100]
  • PARI
    vector(100, n, vecmin(factor(6*n-1)[, 1])) \\ Altug Alkan, Oct 23 2015
    

Formula

a(n) = A020639(6n-1). - R. J. Mathar, Jan 23 2007
5 <= a(n) <= 6n - 1; both bounds are sharp. - Charles R Greathouse IV, Sep 02 2024

Extensions

Comments corrected and (at the suggestion of Michel Marcus) moved to Crossrefs by Jason Kimberley, Oct 23 2015

A306289 The smallest prime factor of numbers greater than 1 and coprime to 6.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 5, 29, 31, 5, 37, 41, 43, 47, 7, 53, 5, 59, 61, 5, 67, 71, 73, 7, 79, 83, 5, 89, 7, 5, 97, 101, 103, 107, 109, 113, 5, 7, 11, 5, 127, 131, 7, 137, 139, 11, 5, 149, 151, 5, 157, 7, 163, 167, 13, 173, 5, 179, 181, 5, 11, 191, 193
Offset: 1

Views

Author

Davis Smith, Feb 03 2019

Keywords

Comments

a(n) is the least prime factor of the n-th number that is greater than 1 and congruent to 1 or 5 (mod 6).
a(n) = 5 when n is congruent to {1, 8} (mod 10) (n is a term in A017281, A017365, or A306277). a(n) = 7 when n is congruent to {2, 11} (mod 14) but not {1, 8} (mod 10). a(n) = 11 when n is congruent to {3, 18} (mod 22) but not a case where it equals 5 or 7. a(n) = 13 when n is congruent to {4, 21} (mod 26) (n is a term in A306285) but not a case where it equals 5, 7, or 11. a(n) = 17 when n is congruent to {5, 28} (mod 34) but not a case where it equals 5, 7, 11, or 13. a(n) = 19 when n is congruent to {6, 31} (mod 38) (n is a term in A306331) but not a case where it equals 5, 7, 11, 13, or 17.
Conjecture: This pattern continues indefinitely. a(n) = A007310(m + 1) when n is congruent to {m, A306277(m + 1)} (mod A091999(m + 1)) but not congruent to {k, A306277(k + 1)} (mod A091999(k + 1)), m > k >= 1. The indices of the first appearance of a number in this sequence supports this conjecture in that they are never, for m > 0, congruent to A306277(m + 1) mod A091999(m + 1).

Examples

			a(n) is the least term, other than 0, in n-th row of the array A(m,n), where A(m,n) is A007310(m + 1) when A007310(n + 1) mod A007310(m + 1) is congruent to 0, otherwise 0.
Table begins
  \m  1 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16 ...
  n\
   1| 5 0  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   2| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   3| 0 0 11  0  0  0  0  0  0   0   0   0   0   0   0   0 ...
   4| 0 0  0 13  0  0  0  0  0   0   0   0   0   0   0   0 ...
   5| 0 0  0  0 17  0  0  0  0   0   0   0   0   0   0   0 ...
   6| 0 0  0  0  0 19  0  0  0   0   0   0   0   0   0   0 ...
   7| 0 0  0  0  0  0 23  0  0   0   0   0   0   0   0   0 ...
   8| 5 0  0  0  0  0  0 25  0   0   0   0   0   0   0   0 ...
   9| 0 0  0  0  0  0  0  0 29   0   0   0   0   0   0   0 ...
  10| 0 0  0  0  0  0  0  0  0  31   0   0   0   0   0   0 ...
  11| 5 7  0  0  0  0  0  0  0   0  35   0   0   0   0   0 ...
  12| 0 0  0  0  0  0  0  0  0   0   0  37   0   0   0   0 ...
  13| 0 0  0  0  0  0  0  0  0   0   0   0  41   0   0   0 ...
  14| 0 0  0  0  0  0  0  0  0   0   0   0   0  43   0   0 ...
  15| 0 0  0  0  0  0  0  0  0   0   0   0   0   0  47   0 ...
  16| 0 7  0  0  0  0  0  0  0   0   0   0   0   0   0  49 ...
For the n-th row of this square array, the leftmost terms, other than 0, are the factors of A(n,n). A(n,n) = A007310(n + 1). If for every m, m < n, A(m,n) = 0, then a(n) = A007310(n + 1) and A007310(n + 1) is prime.
		

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1976), Part Eight, Chap. 2, Section 2, Problems 96 and 105.

Crossrefs

Programs

  • Maple
    seq(min(op(numtheory[factorset] (6*ceil(n/2)+(-1)^n))), n=1..64) ;
  • Mathematica
    FactorInteger[Rest@ Flatten@ Array[6 # + {1, 5} &, 33, 0]][[All, 1, 1]] (* Michael De Vlieger, Feb 15 2019 *)
    FactorInteger[#][[1,1]]&/@Select[Range[2,200],CoprimeQ[#,6]&] (* Harvey P. Dale, Jul 10 2020 *)
  • PARI
    for(n=2, 211, if((n%6==1)||(n%6==5), print1(factor(n)[1,1], ", ")))
    
  • PARI
    vector(64,n,factor(6*ceil(n/2)+(-1)^n)[1,1])
    
  • PARI
    a(n) = n++; factor(n\2*6-(-1)^n)[1,1]; \\ Michel Marcus, Feb 06 2019

Formula

a(n) = A020639(A007310(n + 1)).
a(n) = A020639(3n + A000034(n + 1)).
a(n) = A020639(6*ceiling(n/2) + (-1)^n).
a(floor(prime(n + 2)/3)) = prime(n + 2).

A125254 Smallest prime divisor of 4n-1 that is of the form 4k-1.

Original entry on oeis.org

3, 7, 11, 3, 19, 23, 3, 31, 7, 3, 43, 47, 3, 11, 59, 3, 67, 71, 3, 79, 83, 3, 7, 19, 3, 103, 107, 3, 23, 7, 3, 127, 131, 3, 139, 11, 3, 151, 31, 3, 163, 167, 3, 7, 179, 3, 11, 191, 3, 199, 7, 3, 211, 43, 3, 223, 227, 3, 47, 239, 3, 19, 251, 3, 7, 263, 3, 271, 11, 3, 283, 7, 3, 59, 23
Offset: 1

Views

Author

Nick Hobson, Nov 26 2006

Keywords

Comments

4n-1 always has a prime divisor congruent to 3 modulo 4.

Examples

			The divisors of 4*9 - 1 = 35 are 5 and 7, so a(9) = 7.
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Transpose[FactorInteger[4n-1]][[1]],Mod[#,4]==3&],{n,80}] (* The program uses the SelectFirst function from Mathematica version 10 *) (* Harvey P. Dale, Mar 05 2015 *)
  • PARI
    vector(76, n, f=factor(4*n-1); r=0; until(f[r,1]%4==3, r++); f[r,1])
Showing 1-4 of 4 results.