cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A306278 Numbers congruent to 2 or 11 mod 14.

Original entry on oeis.org

2, 11, 16, 25, 30, 39, 44, 53, 58, 67, 72, 81, 86, 95, 100, 109, 114, 123, 128, 137, 142, 151, 156, 165, 170, 179, 184, 193, 198, 207, 212, 221, 226, 235, 240, 249, 254, 263, 268, 277, 282, 291, 296, 305, 310, 319, 324, 333, 338, 347, 352, 361, 366, 375, 380, 389, 394
Offset: 1

Views

Author

Davis Smith, Feb 02 2019

Keywords

Crossrefs

Primes greater than 2 in this sequence: A045471.

Programs

  • Maple
    seq(seq(14*i+j, j=[2, 11]), i=0..28);
  • Mathematica
    Flatten[Table[{14n + 2, 14n + 11}, {n, 0, 28}]]
    LinearRecurrence[{1,1,-1},{2,11,16},60] (* Harvey P. Dale, Jan 16 2023 *)
  • PARI
    for(n=2, 394, if((n%14==2) || (n%14==11), print1(n, ", ")))
    
  • PARI
    for(n=1,57,print1(7*n-4+(-1)^n,", "))
    
  • PARI
    for(n=1,500,if(n%14==2,print1(n,", "));if(n%14==11,print1(n,", "))) \\ Jinyuan Wang, Feb 03 2019
    
  • PARI
    Vec(x*(2 + 9*x + 3*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Mar 14 2019
    
  • PARI
    upto(n) = forstep(i = 2, n, [9, 5], print1(i", ")) \\ David A. Corneth, Mar 27 2019

Formula

a(n) = 7*n - A010703(n).
a(n) = 7*n - 4 + (-1)^n.
a(n) = a(n - 1) + a(n - 2) - a(n - 3) for n > 3.
A007310(a(n) + 1) = 7*A007310(n)
From Jinyuan Wang, Feb 03 2019: (Start)
For odd number k, a(k) = 7*k - 5.
For even number k, a(k) = 7*k - 3.
(End)
G.f.: x*(2 + 9*x + 3*x^2) / ((1 - x)^2*(1 + x)). - Colin Barker, Mar 14 2019
E.g.f.: 3 + (7*x - 4)*exp(x) + exp(-x). - David Lovler, Sep 07 2022

A306279 Numbers congruent to 3 or 18 mod 22.

Original entry on oeis.org

3, 18, 25, 40, 47, 62, 69, 84, 91, 106, 113, 128, 135, 150, 157, 172, 179, 194, 201, 216, 223, 238, 245, 260, 267, 282, 289, 304, 311, 326, 333, 348, 355, 370, 377, 392, 399, 414, 421, 436, 443, 458, 465, 480, 487, 502, 509, 524, 531, 546, 553, 568
Offset: 1

Views

Author

Davis Smith, Feb 02 2019

Keywords

Crossrefs

Programs

  • Maple
    seq(seq(22*i+j, j=[3, 18]), i=0..200);
  • Mathematica
    Select[Range[200], MemberQ[{3, 18}, Mod[#, 22]] &]
    Flatten[Table[{22n + 3, 22n + 18}, {n, 0, 43}]] (* Alonso del Arte, Feb 18 2019 *)
  • PARI
    for(n=3, 678, if((n%22==3) || (n%22==18), print1(n, ", ")))
    
  • PARI
    vector(62,n,11*n-6+2*(-1)^n)
    
  • PARI
    Vec(x*(3 + 15*x + 4*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 07 2019
    
  • Scala
    (3 to 949 by 22).union(18 to 942 by 22).sorted // Alonso del Arte, Feb 18 2019

Formula

a(n) = 11*n - 6 + 2*(-1)^n.
a(n) = 11*n - A105398(n + 4).
A007310(a(n) + 1) = 11*A007310(n).
From Colin Barker, Feb 07 2019: (Start)
G.f.: x*(3 + 15*x + 4*x^2) / ((1 - x)^2*(1 + x)).
a(n) = a(n - 1) + a(n - 2) - a(n - 3) for n > 3. (End)
E.g.f.: 4 + (11*x - 6)*exp(x) + 2*exp(-x). - David Lovler, Sep 08 2022
Showing 1-2 of 2 results.