A111882 Row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).
1, 1, 0, 4, 4, 36, 256, 400, 17424, 784, 1478656, 876096, 154753600, 560363584, 19057250304, 220388935936, 2564046397696, 83038749753600, 327933273309184, 33173161139160064, 26222822450021376, 14475245839622726656
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..449
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1+x))/Sqrt(1-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 10 2018 -
Mathematica
With[{nmax = 50}, CoefficientList[Series[Exp[x/(1 + x)]/Sqrt[1 - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 10 2018 *)
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(x/(1+x))/sqrt(1-x^2))) \\ G. C. Greubel, Jun 10 2018
-
Python
from sympy import hermite, Poly, sqrt def a(n): return sum(Poly(1/2**n*hermite(n, sqrt(x/2))**2, x).all_coeffs()) # Indranil Ghosh, May 26 2017
Formula
E.g.f.: exp(x/(1+x))/sqrt(1-x^2).
a(n) = Sum_{m=0..n} A111595(n, m), n>=0.
D-finite with recurrence a(n) +(n-2)*a(n-1) -(n-1)*(n-2)*a(n-2) -(n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Oct 05 2014