cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A111595 Triangle of coefficients of square of Hermite polynomials divided by 2^n with argument sqrt(x/2).

Original entry on oeis.org

1, 0, 1, 1, -2, 1, 0, 9, -6, 1, 9, -36, 42, -12, 1, 0, 225, -300, 130, -20, 1, 225, -1350, 2475, -1380, 315, -30, 1, 0, 11025, -22050, 15435, -4620, 651, -42, 1, 11025, -88200, 220500, -182280, 67830, -12600, 1204, -56, 1, 0, 893025, -2381400, 2302020, -1020600, 235494, -29736, 2052, -72
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

This is a Sheffer triangle (lower triangular exponential convolution matrix). For Sheffer row polynomials see the S. Roman reference and explanations under A048854.
In the umbral notation of the S. Roman reference this would be called Sheffer for ((sqrt(1-2*t))/(1-t), t/(1-t)).
The associated Sheffer triangle is A111596.
Matrix logarithm equals A112239. - Paul D. Hanna, Aug 29 2005
The row polynomials (1/2^n)* H(n,sqrt(x/2))^2, with the Hermite polynomials H(n,x), have e.g.f. (1/sqrt(1-y^2))*exp(x*y/(1+y)).
The row polynomials s(n,x):=sum(a(n,m)*x^m,m=0..n), together with the associated row polynomials p(n,x) of A111596, satisfy the exponential (or binomial) convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), n>=0.
The unsigned column sequences are: A111601, A111602, A111777-A111784, for m=1..10.

Examples

			The triangle a(n, m) begins:
n\m       0         1         2          3         4         5       6       7     8    9  10 ...
0:        1
1:        0         1
2:        1        -2         1
3:        0         9        -6          1
4:        9       -36        42        -12         1
5:        0       225      -300        130       -20         1
6:      225     -1350      2475      -1380       315       -30       1
7:        0     11025    -22050      15435     -4620       651     -42       1
8:    11025    -88200    220500    -182280     67830    -12600    1204     -56     1
9:        0    893025  -2381400    2302020  -1020600    235494  -29736    2052   -72    1
10:  893025  -8930250  28279125  -30958200  15961050  -4396140  689850  -63000  3285  -90   1
-------------------------------------------------------------------------------------------------
		

References

  • R. P. Boas and R. C. Buck, Polynomial Expansions of Analytic Functions, Springer, 1958, p. 41
  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984, p. 128.

Crossrefs

Row sums: A111882. Unsigned row sums: A111883.
Cf. A112239 (matrix log).

Programs

  • Mathematica
    row[n_] := CoefficientList[ 1/2^n*HermiteH[n, Sqrt[x/2]]^2, x]; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)
  • Python
    from sympy import hermite, Poly, sqrt, symbols
    x = symbols('x')
    def a(n): return Poly(1/2**n*hermite(n, sqrt(x/2))**2, x).all_coeffs()[::-1]
    for n in range(11): print(a(n)) # Indranil Ghosh, May 26 2017

Formula

E.g.f. for column m>=0: (1/sqrt(1-x^2))*((x/(1+x))^m)/m!.
a(n, m)=((-1)^(n-m))*(n!/m!)*sum(binomial(2*k, k)*binomial(n-2*k-1, m-1)/(4^k), k=0..floor((n-m)/2)), n>=m>=1. a(2*k, 0)= ((2*k)!/(k!*2^k))^2 = A001818(k), a(2*k+1) = 0, k>=0. a(n, m)=0 if n

A111883 Unsigned row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).

Original entry on oeis.org

1, 1, 4, 16, 100, 676, 5776, 53824, 583696, 6864400, 90174016, 1274204416, 19642583104, 323196798016, 5714394630400, 107112895415296, 2135062451773696, 44858948563673344, 994634863541502976, 23133227941938073600, 564474119626559497216, 14388648533002088866816
Offset: 0

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Crossrefs

Cf. A111882 (row sums of A111595).

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1-x))/Sqrt(1-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 09 2018
  • Mathematica
    Table[Abs[HermiteH[n, I/Sqrt[2]]]^2/2^n, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 11 2016 *)
    CoefficientList[Series[Exp[t/(1-t)]/Sqrt[1-t^2],{t,0,100}],t] Range[0, 12]! (* Emanuele Munarini, Aug 31 2017 *)
  • PARI
    a(n)=if(n<0, 0, n!*polcoeff(exp(x/(1-x)+x*O(x^n))/sqrt(1-x^2+x*O(x^n)),n)) /* Michael Somos, Aug 30 2005 */
    
  • Python
    from sympy import hermite, Poly, sqrt, I
    def a(n): return abs(Poly(hermite(n, I/sqrt(2)), x))**2/2**n # Indranil Ghosh, May 26 2017
    

Formula

E.g.f.: exp(x/(1-x))/sqrt(1-x^2).
a(n) = A000085(n)^2. - Michael Somos, Aug 30 2005
Conjecture: a(n) -n*a(n-1) -n*(n-1)*a(n-2) +(n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Oct 05 2014
Remark: the above conjectured recurrence is true and can be easily obtained by the e.g.f. - Emanuele Munarini, Aug 31 2017
a(n) = |H_n(i/sqrt(2))|^2 / 2^n = H_n(i/sqrt(2)) * H_n(-i/sqrt(2)) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1). - Vladimir Reshetnikov, Oct 11 2016
a(n) ~ exp(2*sqrt(n) - n - 1/2) * n^n / 2. - Vaclav Kotesovec, Oct 01 2017
Showing 1-2 of 2 results.