A111595 Triangle of coefficients of square of Hermite polynomials divided by 2^n with argument sqrt(x/2).
1, 0, 1, 1, -2, 1, 0, 9, -6, 1, 9, -36, 42, -12, 1, 0, 225, -300, 130, -20, 1, 225, -1350, 2475, -1380, 315, -30, 1, 0, 11025, -22050, 15435, -4620, 651, -42, 1, 11025, -88200, 220500, -182280, 67830, -12600, 1204, -56, 1, 0, 893025, -2381400, 2302020, -1020600, 235494, -29736, 2052, -72
Offset: 0
Examples
The triangle a(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 0 1 2: 1 -2 1 3: 0 9 -6 1 4: 9 -36 42 -12 1 5: 0 225 -300 130 -20 1 6: 225 -1350 2475 -1380 315 -30 1 7: 0 11025 -22050 15435 -4620 651 -42 1 8: 11025 -88200 220500 -182280 67830 -12600 1204 -56 1 9: 0 893025 -2381400 2302020 -1020600 235494 -29736 2052 -72 1 10: 893025 -8930250 28279125 -30958200 15961050 -4396140 689850 -63000 3285 -90 1 -------------------------------------------------------------------------------------------------
References
- R. P. Boas and R. C. Buck, Polynomial Expansions of Analytic Functions, Springer, 1958, p. 41
- S. Roman, The Umbral Calculus, Academic Press, New York, 1984, p. 128.
Links
- G. C. Greubel, Rows n=0..100 of triangle, flattened
Programs
-
Mathematica
row[n_] := CoefficientList[ 1/2^n*HermiteH[n, Sqrt[x/2]]^2, x]; Table[row[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jul 17 2013 *)
-
Python
from sympy import hermite, Poly, sqrt, symbols x = symbols('x') def a(n): return Poly(1/2**n*hermite(n, sqrt(x/2))**2, x).all_coeffs()[::-1] for n in range(11): print(a(n)) # Indranil Ghosh, May 26 2017
Formula
E.g.f. for column m>=0: (1/sqrt(1-x^2))*((x/(1+x))^m)/m!.
a(n, m)=((-1)^(n-m))*(n!/m!)*sum(binomial(2*k, k)*binomial(n-2*k-1, m-1)/(4^k), k=0..floor((n-m)/2)), n>=m>=1. a(2*k, 0)= ((2*k)!/(k!*2^k))^2 = A001818(k), a(2*k+1) = 0, k>=0. a(n, m)=0 if n
A270229 Number of matchings in the 2 X n rook graph P_2 X K_n.
1, 2, 7, 32, 193, 1382, 11719, 112604, 1221889, 14639786, 192949639, 2760749048, 42732172993, 709490574158, 12596398359367, 237750425419508, 4757710386662401, 100516614496518866, 2236829315345704711, 52262526676903613264, 1279512810244450887361
Offset: 0
Keywords
Comments
Sequence extended to n=0 using closed form. (binomial transform of A111883)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Programs
-
Mathematica
a[n_] := Sum[Binomial[n, k]*Abs[HermiteH[k, I/Sqrt[2]]]^2/2^k, {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Oct 01 2017 *) CoefficientList[Series[E^((2-x)*x/(1-x)) / Sqrt[1-x^2], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Oct 01 2017 *)
Formula
Binomial transform of A111883.
From Vaclav Kotesovec, Oct 01 2017: (Start)
a(n) = (n+1)*a(n-1) + (n-1)^2*a(n-2) - (n-2)*(n-1)^2*a(n-3) + (n-3)*(n-2)*(n-1)*a(n-4).
E.g.f.: exp((2-x)*x/(1-x)) / sqrt(1-x^2).
a(n) ~ exp(1/2 + 2*sqrt(n) - n) * n^n / 2.
(End)
A111882 Row sums of triangle A111595 (normalized rescaled squared Hermite polynomials).
1, 1, 0, 4, 4, 36, 256, 400, 17424, 784, 1478656, 876096, 154753600, 560363584, 19057250304, 220388935936, 2564046397696, 83038749753600, 327933273309184, 33173161139160064, 26222822450021376, 14475245839622726656
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..449
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x/(1+x))/Sqrt(1-x^2))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jun 10 2018 -
Mathematica
With[{nmax = 50}, CoefficientList[Series[Exp[x/(1 + x)]/Sqrt[1 - x^2], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 10 2018 *)
-
PARI
x='x+O('x^30); Vec(serlaplace(exp(x/(1+x))/sqrt(1-x^2))) \\ G. C. Greubel, Jun 10 2018
-
Python
from sympy import hermite, Poly, sqrt def a(n): return sum(Poly(1/2**n*hermite(n, sqrt(x/2))**2, x).all_coeffs()) # Indranil Ghosh, May 26 2017
Formula
E.g.f.: exp(x/(1+x))/sqrt(1-x^2).
a(n) = Sum_{m=0..n} A111595(n, m), n>=0.
D-finite with recurrence a(n) +(n-2)*a(n-1) -(n-1)*(n-2)*a(n-2) -(n-1)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Oct 05 2014
A173869 Irregular table T(n,k) = A164341(n,k) * A036039(n,k) read by rows.
1, 2, 2, 6, 6, 4, 24, 24, 18, 24, 10, 120, 120, 120, 120, 90, 80, 26, 720, 720, 720, 480, 720, 720, 300, 480, 540, 300, 76, 5040, 5040, 5040, 5040, 5040, 5040, 3360, 3780, 3360, 5040, 2100, 2100, 2520, 1092, 232, 40320, 40320, 40320, 40320, 25200, 40320
Offset: 1
Comments
Examples
The row lengths of A164341 and A036039 are the same, so one can multiply the flattened arrays point-by-point to compute this sequence here: 1..2..2..3..2..4.. A164341 times 1..1..1..2..3..1.. A036039 yields 1..2..2..6..6..4..
Extensions
Definition rephrased by R. J. Mathar, Mar 26 2010
Comments