cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111900 Number of partitions of n into distinct squares of primes.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 20 2005

Keywords

Comments

a(n) <= 1 for n < 410.

Examples

			G.f. = 1 + x^4 + x^9 + x^13 + x^25 + x^29 + x^34 + x^38 + x^49 + x^53 + x^58 + x^62 + ...
410 = 7^2 + 19^2 = 11^2 + 17^2, therefore a(410)=2.
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 + x^Prime[k]^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Ilya Gutkovskiy, Jun 15 2017 *)
  • PARI
    {a(n) = if(n < 0, 0, polcoeff( prod(k=1, primepi(sqrtint(n)), 1 + x^prime(k)^2 + x*O(x^n)), n))}; /* Michael Somos, Dec 26 2016 */

Formula

G.f.: Product_{k>=1} (1 + x^(prime(k)^2)). - Ilya Gutkovskiy, Dec 26 2016