A111900 Number of partitions of n into distinct squares of primes.
1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 0
Examples
G.f. = 1 + x^4 + x^9 + x^13 + x^25 + x^29 + x^34 + x^38 + x^49 + x^53 + x^58 + x^62 + ... 410 = 7^2 + 19^2 = 11^2 + 17^2, therefore a(410)=2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..20000
- Alois P. Heinz, Plot of the first 100000 terms
- Index entries for sequences related to sums of squares
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1 + x^Prime[k]^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Ilya Gutkovskiy, Jun 15 2017 *)
-
PARI
{a(n) = if(n < 0, 0, polcoeff( prod(k=1, primepi(sqrtint(n)), 1 + x^prime(k)^2 + x*O(x^n)), n))}; /* Michael Somos, Dec 26 2016 */
Formula
G.f.: Product_{k>=1} (1 + x^(prime(k)^2)). - Ilya Gutkovskiy, Dec 26 2016
Comments