A111925 Numbers of the form a^2 + b^4, with a,b > 0.
2, 5, 10, 17, 20, 25, 26, 32, 37, 41, 50, 52, 65, 80, 82, 85, 90, 97, 101, 106, 116, 117, 122, 130, 137, 145, 160, 162, 170, 181, 185, 197, 202, 212, 225, 226, 241, 250, 257, 260, 265, 272, 277, 281, 290, 292, 305, 306, 320, 325, 337, 340, 356, 362, 370, 377
Offset: 1
Keywords
Examples
25 = 3^2 + 2^4, so 25 is an element of the sequence.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- J. Friedlander and H. Iwaniec, The polynomial x^2 + y^4 captures its primes, arXiv:math/9811185 [math.NT], 1998; Ann. of Math. 148 (1998), 945-1040.
- Wikipedia, Friedlander-Iwaniec theorem
Crossrefs
Programs
-
Maple
isA111925 := proc(n) local a,b ; for a from 1 do if a^4 >= n then return false; end if; b := n-a^4 ; if issqr(b) then return true; end if; end do: end proc: A111925 := proc(n) option remember; if n = 1 then 2; else for a from procname(n-1)+1 do if isA111925(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Apr 22 2013
-
Mathematica
With[{nn=60},Take[Union[First[#]^2+Last[#]^4&/@Tuples[Range[nn],2]],nn]] (* Harvey P. Dale, Jul 09 2014 *)
-
PARI
list(lim)=my(v=List(),t); lim\=1; for(b=1,sqrtnint(lim-1,4), t=b^4; for(a=1,sqrtint(lim-t), listput(v,t+a^2))); Set(v) \\ Charles R Greathouse IV, Jun 07 2016
-
PARI
is(n)=for(b=1,sqrtnint(n-1,4), if(issquare(n-b^4), return(1))); 0 \\ Charles R Greathouse IV, Jun 07 2016
Comments