cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111926 Expansion of x^4/((1-2*x)*(x^2-x+1)*(x-1)^2).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 36, 78, 162, 331, 671, 1353, 2718, 5448, 10908, 21829, 43673, 87363, 174744, 349506, 699030, 1398079, 2796179, 5592381, 11184786, 22369596, 44739216, 89478457, 178956941, 357913911, 715827852, 1431655734, 2863311498
Offset: 0

Views

Author

Creighton Dement, Aug 21 2005

Keywords

Comments

Binomial transform of sequence (0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0). Note: the binomial transform of the sequence (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) is A111927; the binomial transform of the sequence (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0) is A024495 (disregarding first two terms, which are both zero).
Floretion Algebra Multiplication Program, FAMP Code: -4ibaseisumseq[ + .5'i + .5'j + .5'k + .5'ij' + .5'jk' + .5'ki' + e], sumtype: Y[8] = (int)Y[6] - (int)Y[7] + Y[8] + sum (internal program code).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^4/((1-2x)(x^2-x+1)(x-1)^2),{x,0,40}],x] (* or *) LinearRecurrence[{5,-10,11,-7,2},{0,0,0,0,1},40] (* Harvey P. Dale, Feb 24 2016 *)

Formula

a(n+2) - a(n+1) + a(n) = A000295(n) = 2^n - n - 1 (Eulerian numbers).
a(n) = 1/3*2^n-n+2/3*(1/2+1/2*I*sqrt(3))^n*(-1/4-1/4*I*sqrt(3))+2/3*(1/2-1/2*I*sqrt(3))^n*(-1/4+1/4*I*sqrt(3)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(n)=5*a(n-1)-10*a(n-2)+ 11*a(n-3)- 7*a(n-4)+2*a(n-5). - Harvey P. Dale, Feb 24 2016
a(n) = Sum_{k=1..floor(n/2)} binomial(n, 3*k+1). - Taras Goy, Jan 02 2025
E.g.f.: exp(x/2)*(exp(x/2)*(exp(x) - 3*x) - cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Jan 03 2025