A111926 Expansion of x^4/((1-2*x)*(x^2-x+1)*(x-1)^2).
0, 0, 0, 0, 1, 5, 15, 36, 78, 162, 331, 671, 1353, 2718, 5448, 10908, 21829, 43673, 87363, 174744, 349506, 699030, 1398079, 2796179, 5592381, 11184786, 22369596, 44739216, 89478457, 178956941, 357913911, 715827852, 1431655734, 2863311498
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,11,-7,2).
Programs
-
Mathematica
CoefficientList[Series[x^4/((1-2x)(x^2-x+1)(x-1)^2),{x,0,40}],x] (* or *) LinearRecurrence[{5,-10,11,-7,2},{0,0,0,0,1},40] (* Harvey P. Dale, Feb 24 2016 *)
Formula
a(n+2) - a(n+1) + a(n) = A000295(n) = 2^n - n - 1 (Eulerian numbers).
a(n) = 1/3*2^n-n+2/3*(1/2+1/2*I*sqrt(3))^n*(-1/4-1/4*I*sqrt(3))+2/3*(1/2-1/2*I*sqrt(3))^n*(-1/4+1/4*I*sqrt(3)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(n)=5*a(n-1)-10*a(n-2)+ 11*a(n-3)- 7*a(n-4)+2*a(n-5). - Harvey P. Dale, Feb 24 2016
a(n) = Sum_{k=1..floor(n/2)} binomial(n, 3*k+1). - Taras Goy, Jan 02 2025
E.g.f.: exp(x/2)*(exp(x/2)*(exp(x) - 3*x) - cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Jan 03 2025
Comments