cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A111941 Matrix log of triangle A111940, which shifts columns left and up under matrix inverse; these terms are the result of multiplying each element in row n and column k by (n-k)!.

Original entry on oeis.org

0, 1, 0, -1, -1, 0, 1, 1, 1, 0, -2, -1, -1, -1, 0, 4, 2, 1, 1, 1, 0, -12, -4, -2, -1, -1, -1, 0, 36, 12, 4, 2, 1, 1, 1, 0, -144, -36, -12, -4, -2, -1, -1, -1, 0, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0, -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0, 14400, 2880, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0, -86400, -14400, -2880, -576, -144, -36
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2005

Keywords

Examples

			Triangle begins:
0;
1, 0;
-1, -1, 0;
1, 1, 1, 0;
-2, -1, -1, -1, 0;
4, 2, 1, 1, 1, 0;
-12, -4, -2, -1, -1, -1, 0;
36, 12, 4, 2, 1, 1, 1, 0;
-144, -36, -12, -4, -2, -1, -1, -1, 0;
576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
-2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0;
14400, 2880, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
-86400, -14400, -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0;
518400, 86400, 14400, 2880, 576, 144, 36, 12, 4, 2, 1, 1, 1, 0;
-3628800, -518400, -86400, -14400, -2880, -576, -144, -36, -12, -4, -2, -1, -1, -1, 0; ...
where, apart from signs, the columns are all the same (A111942).
...
Triangle A111940 begins:
1;
1, 1;
-1, -1, 1;
0, 0, 1, 1;
0, 0, -1, -1, 1;
0, 0, 0, 0, 1, 1;
0, 0, 0, 0, -1, -1, 1;
0, 0, 0, 0, 0, 0, 1 ,1;
0, 0, 0, 0, 0, 0, -1, -1, 1; ...
where the matrix inverse shifts columns left and up one place.
...
The matrix log of A111940, with factorial denominators, begins:
0;
1/1!, 0;
-1/2!, -1/1!, 0;
1/3!, 1/2!, 1/1!, 0;
-2/4!, -1/3!, -1/2!, -1/1!, 0;
4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
-12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
-144/8!, -36/7!, -12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
576/9!, 144/8!, 36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0;
-2880/10!, -576/9!, -144/8!, -36/7!, -12/6!, -4/5!, -2/4!, -1/3!, -1/2!, -1/1!, 0;
14400/11!, 2880/10!, 576/9!, 144/8!, 36/7!, 12/6!, 4/5!, 2/4!, 1/3!, 1/2!, 1/1!, 0; ...
Note that the square of the matrix log of A111940 begins:
0;
0, 0;
-1, 0, 0;
0, -1, 0, 0;
-1/12, 0, -1, 0, 0;
0, -1/12, 0, -1, 0, 0;
-1/90, 0, -1/12, 0, -1, 0, 0;
0, -1/90, 0, -1/12, 0, -1, 0, 0;
-1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
-1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
0, -1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0;
-1/16632, 0, -1/3150, 0, -1/560, 0, -1/90, 0, -1/12, 0, -1, 0, 0; ...
where nonzero terms are negative unit fractions with denominators given by A002544:
[1, 12, 90, 560, 3150, 16632, 84084, 411840, ...,  C(2*n+1,n)*(n+1)^2, ...].
		

Crossrefs

Cf. A111940 (triangle), A111942 (column 0), A110504 (variant).

Programs

  • PARI
    {T(n,k,q=-1) = local(A=Mat(1),B); if(n
    				

Formula

T(n, k) = (-1)^k*T(n-k, 0) = (-1)^k*A111942(n-k) for n>=k>=0.

A264638 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 4.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 28, 16, 1, 12, 400, 960, 128, 2, 36, 7776, 107568, 46656, 1152, 4, 144, 229392, 21565440, 71663616, 4561920, 12960, 8, 576, 9082368, 10027929600, 229132800000, 98288640000, 829440000, 269568, 16, 2880, 481406976
Offset: 1

Views

Author

R. H. Hardin, Nov 19 2015

Keywords

Comments

Table starts
..1......1.........2...........4...........12..........36...........144
..1......3........28.........400.........7776......229392.......9082368
..1.....16.......960......107568.....21565440.10027929600.7163873280000
..1....128.....46656....71663616.229132800000
..2...1152...4561920.98288640000
..4..12960.829440000
..8.269568
.16

Examples

			Some solutions for n=3 k=4
..4..8..1..9....0..4..8..1....0..4..5..1....0..2..5..3....4..8..6..0
..0..6..2..5...10..2..7..9....2..8.11..9....8.10..1..7...10..9..7..5
.10..7.11..3....6.11..3..5....6.10..3..7....4..6..9.11....2..1.11..3
		

Crossrefs

Row 1 is A111942(n+1).

A264560 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 3.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 24, 15, 2, 12, 316, 888, 156, 4, 36, 6080, 84672, 58368, 2032, 8, 144, 149824, 17444160, 66194496, 7019136, 30912, 24, 576, 5728896, 5356808640
Offset: 1

Views

Author

R. H. Hardin, Nov 17 2015

Keywords

Comments

Table starts
..1.....1.......2........4.......12.........36.....144.576
..1.....3......24......316.....6080.....149824.5728896
..1....15.....888....84672.17444160.5356808640
..2...156...58368.66194496
..4..2032.7019136
..8.30912
.24

Examples

			Some solutions for n=3 k=4
..4..6..1..9....6..4..9..3....0.11..9..1....0..9..1..3....6..4.10..0
.11..3..7..5....8.10..0..7....6..5..3..7....6..8..4..7....9..1..7..3
..2..0.10..8....2..1..5.11....4..8..2.10...10..2.11..5....8..2.11..5
		

Crossrefs

Row 1 is A111942(n+1).

A264659 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 5.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 16, 8, 1, 12, 148, 314, 38, 1, 36, 2400, 20940, 8944, 223, 2, 144, 62800, 3084352, 5911808, 437568, 2412, 4, 576, 2150784, 726042624, 7707842560, 2436623360, 31791360, 26400, 8, 2880, 89051520, 284038382592
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2015

Keywords

Comments

Table starts
.1.....1........2..........4.........12........36..........144......576.2880
.1.....3.......16........148.......2400.....62800......2150784.89051520
.1.....8......314......20940....3084352.726042624.284038382592
.1....38.....8944....5911808.7707842560
.1...223...437568.2436623360
.2..2412.31791360
.4.26400
.8

Examples

			Some solutions for n=3 k=4
..2..0..1..5....8..6.10..5....0.10..7..1....8.10..0.11....2..0..6..5
..8.10..7.11....4..2..0..1...11..5..9..3....9..1..5..7....8.10.11..7
..4..6..3..9....9..7.11..3....2..6..4..8....4..6..2..3....4..3..1..9
		

Crossrefs

Row 1 is A111942(n+1).

A264704 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 6.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 15, 6, 1, 12, 212, 296, 36, 1, 36, 3712, 26304, 9024, 288, 1, 144, 96256, 4689792, 7708608, 492480, 2240, 2, 576, 3423168, 1263257856, 15216574464, 4137827328, 30233088, 20736, 4, 2880, 158521536, 603321053184
Offset: 1

Views

Author

R. H. Hardin, Nov 21 2015

Keywords

Comments

Table starts
.1.....1........2..........4..........12.........36..........144.......576.2880
.1.....3.......15........212........3712......96256......3423168.158521536
.1.....6......296......26304.....4689792.1263257856.603321053184
.1....36.....9024....7708608.15216574464
.1...288...492480.4137827328
.1..2240.30233088
.2.20736

Examples

			Some solutions for n=3 k=4
..0..6..8..7....4..6..0..7....8..6..2..0....4..2..6..7....0..6..3..1
..2..4.10..1...10..2..8..1...10..1..5..3...10..8..0..1....8..2.10..7
..9..5.11..3....5.11..3..9....4..7.11..9...11..3..9..5....4..5.11..9
		

Crossrefs

Row 1 is A111942(n+1).

A264794 T(n,k)=Number of nXk arrays of permutations of 0..n*k-1 with rows nondecreasing modulo 2 and columns nondecreasing modulo 7.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 15, 6, 1, 12, 130, 170, 23, 1, 36, 1944, 9656, 3089, 112, 1, 144, 40188, 1369408, 1685728, 106568, 561, 1, 576, 1149120, 275062400, 1816673024, 410210112, 4676432, 3519, 2, 2880, 49148112, 89203565824
Offset: 1

Views

Author

R. H. Hardin, Nov 25 2015

Keywords

Comments

Table starts
.1....1.......2.........4.........12........36.........144......576.2880
.1....3......15.......130.......1944.....40188.....1149120.49148112
.1....6.....170......9656....1369408.275062400.89203565824
.1...23....3089...1685728.1816673024
.1..112..106568.410210112
.1..561.4676432
.1.3519
.2

Examples

			Some solutions for n=3 k=4
..0..1..7..9....0..9..1..7....0..1..9..7....8..7..1..9....9..7..1..3
..4..8..2.10....8..2..3.11....2..4.10..8....2..0..4.10...10..0..2..4
..6.11..3..5....4..6.10..5....6..5..3.11....6..3..5.11....6..8..5.11
		

Crossrefs

Row 1 is A111942(n+1).

A111849 Column 0 of the matrix logarithm (A111848) of triangle A111845, which shifts columns left and up under matrix 4th power; these terms are the result of multiplying the element in row n by n!.

Original entry on oeis.org

0, 1, 4, 56, 1728, -45696, -159401472, 387212983296, 14722642769657856, -783395638188945997824, -571756408840959817330851840, 603349161280921866200339538247680, 8390141848229920894318007084122311229440
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2005

Keywords

Comments

Let q=4; the g.f. of column k of A111845^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

Examples

			E.g.f. A(x) = x + 4/2!*x^2 + 56/3!*x^3 + 1728/4!*x^4
- 45696/5!*x^5 - 159401472/6!*x^6 +...
where A(x) satisfies:
x = A(x) - A(x)*A(4*x)/2! + A(x)*A(4*x)*A(4^2*x)/3!
- A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! + ...
also:
Let G(x) be the g.f. of A111846 (column 0 of A111845), then
G(x) = 1 + x + 4*x^2 + 40*x^3 + 1040*x^4 + 78240*x^5 +...
= 1 + A(x) + A(x)*A(4*x)/2! + A(x)*A(4*x)*A(4^2*x)/3!
+ A(x)*A(4*x)*A(4^2*x)*A(4^3*x)/4! +...
		

Crossrefs

Cf. A111848 (matrix log), A111845 (triangle), A111846, A111821 (variant), A111942 (q=-1), A111811 (q=2), A111844 (q=3).

Programs

  • PARI
    {a(n,q=4)=local(A=Mat(1),B);if(n<0,0, for(m=1,n+1,B=matrix(m,m);for(i=1,m, for(j=1,i, if(j==i,B[i,j]=1,if(j==1,B[i,j]=(A^q)[i-1,1], B[i,j]=(A^q)[i-1,j-1]));));A=B); B=sum(i=1,#A,-(A^0-A)^i/i);return(n!*B[n+1,1]))}

Formula

E.g.f. satisfies: x = Sum_{n>=1} -(-1)^n/n!*Prod_{j=0..n-1} A(4^j*x).

A111940 Triangle P, read by rows, that satisfies [P^-1](n,k) = P(n+1,k+1) for n >= k >= 0, with P(k,k)=1 and P(k+1,1)=P(k+1,0) for k >= 0, where [P^-1] denotes the matrix inverse of P.

Original entry on oeis.org

1, 1, 1, -1, -1, 1, 0, 0, 1, 1, 0, 0, -1, -1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2005

Keywords

Examples

			Triangle P begins:
   1;
   1,  1;
  -1, -1,  1;
   0,  0,  1,  1;
   0,  0, -1, -1,  1;
   0,  0,  0,  0,  1,  1;
   0,  0,  0,  0, -1, -1,  1;
   0,  0,  0,  0,  0,  0,  1,  1;
   0,  0,  0,  0,  0,  0, -1, -1,  1; ...
where P^-1 shifts columns left and up one place:
   1;
  -1,  1;
   0,  1,  1;
   0, -1, -1,  1;
   0,  0,  0,  1,  1;
   0,  0,  0, -1, -1,  1; ...
		

Crossrefs

Cf. A111941 (matrix log), A111942, A110503 (variant).

Programs

  • PARI
    {P(n,k,q=-1) = local(A=Mat(1),B); if(n
    				

Formula

The g.f. of column k of matrix power P^m (ignoring leading zeros) is:
cos(m*arccos(1-x^2/2)) + (-1)^k * sin(m*arccos(1-x^2/2)) * (1-x/2) / sqrt(1-x^2/4).
Showing 1-8 of 8 results.