A111943 Prime p with prime gap q - p of n-th record Cramer-Shanks-Granville ratio, where q is smallest prime larger than p and C-S-G ratio is (q-p)/(log p)^2.
23, 113, 1327, 31397, 370261, 2010733, 20831323, 25056082087, 2614941710599, 19581334192423, 218209405436543, 1693182318746371
Offset: 1
Examples
----------------------------- n ratio a(n) ----------------------------- 1 0.6103 23 2 0.6264 113 3 0.6575 1327 4 0.6715 31397 5 0.6812 370261 6 0.7025 2010733 7 0.7394 20831323 8 0.7953 25056082087 9 0.7975 2614941710599 10 0.8177 19581334192423 11 0.8311 218209405436543 12 0.9206 1693182318746371
References
- R. K. Guy, Unsolved Problems in Theory of Numbers, Springer-Verlag, Third Edition, 2004, A8.
Links
- Andrew Granville, Harald Cramér and the distribution of prime numbers, Scandinavian Actuarial J. 1 (1995), pp. 12-28.
- Alexei Kourbatov, Upper bounds for prime gaps related to Firoozbakht's conjecture, arXiv:1506.03042 [math.NT], 2015; J. Integer Sequences, 18 (2015), Article 15.11.2.
- Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101]
- Daniel Shanks, On maximal gaps between successive primes, Math. Comp. 18 (88) (1964), 646-651.
- Eric Weisstein's World of Mathematics, Prime Gaps.
- Eric Weisstein's World of Mathematics, Cramer-Granville Conjecture.
- Eric Weisstein's World of Mathematics, Shanks Conjecture (and Wolf Conjecture).
Programs
-
PARI
r=CSG=0;p=13;forprime(q=17,1e8,if(q-p>r,r=q-p; t=r/log(p)^2; if(t>CSG, CSG=t; print1(p", ")));p=q) \\ Charles R Greathouse IV, Apr 07 2013
Extensions
Corrected and edited (p_n could be misinterpreted as the n-th prime) by Daniel Forgues, Nov 20 2009
Edited by Charles R Greathouse IV, May 14 2010
Comments