A111946 Triangle read by rows: T(n,k) = gcd(Fibonacci(n), Fibonacci(k)), 1 <= k <= n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 8, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 3, 1, 1, 1, 21, 1, 1, 2, 1, 1, 2, 1, 1, 34, 1, 1, 1, 1, 5, 1, 1, 1, 1, 55, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 89, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 2; 1, 1, 1, 3; 1, 1, 1, 1, 5; 1, 1, 2, 1, 1, 8; 1, 1, 1, 1, 1, 1, 13; 1, 1, 1, 3, 1, 1, 1, 21; 1, 1, 2, 1, 1, 2, 1, 1, 34; 1, 1, 1, 1, 5, 1, 1, 1, 1, 55; ...
Links
- T. D. Noe, Rows n = 1..150 of triangle, flattened
- P. Ribenboim, FFF (Favorite Fibonacci Flowers), Fib. Q. 43 (No. 1, 2005), 3-14.
Programs
-
Magma
/* As triangle */ [[Gcd(Fibonacci(n), Fibonacci(k)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 20 2015
-
Mathematica
T[ n_, k_] := Fibonacci @ GCD[ n, k] (* Michael Somos, Jul 18 2011 *)
-
PARI
{T(n, k) = fibonacci( gcd( n, k))} /* Michael Somos, Jul 18 2011 */
Formula
T(n, k) = Fibonacci(gcd(n, k)).
T(n, k) = T(k, n) = T(-n, k) = T(n, -k) = T(n, n+k) = T(n+k, k). - Michael Somos, Jul 18 2011
Comments