cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A111956 Triangle read by rows: T(n,k) = gcd(Lucas(n), Lucas(k)), 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 1, 4, 1, 1, 1, 7, 1, 1, 1, 1, 11, 1, 3, 2, 1, 1, 18, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 47, 1, 1, 4, 1, 1, 2, 1, 1, 76, 1, 3, 1, 1, 1, 3, 1, 1, 1, 123, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 199, 1, 1, 2, 7, 1, 2, 1, 1, 2, 1, 1, 322, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 521
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[GCD[LucasL[n], LucasL[k]], {n,20}, {k,n}]] (* Harvey P. Dale, Nov 23 2012 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(gcd(fibonacci(n+1) + fibonacci(n-1), fibonacci(k+1) + fibonacci(k-1)), ", "))) \\ G. C. Greubel, Dec 17 2017

Formula

T(n, k) = Lucas(g), where g = gcd(n, k), if n/g and k/g are odd; = 2 if n/g or k/g are even and 3|g; = 1 otherwise.

A111957 Triangle read by rows: T(n,k) = gcd(Fibonacci(n), Lucas(k)), 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 18, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Examples

			Triangle begins:
1,
1, 1,
1, 1, 2,
1, 3, 1, 1,
1, 1, 1, 1, 1,
1, 1, 4, 1, 1, 2,
1, 1, 1, 1, 1, 1, 1,
1, 3, 1, 7, 1, 3, 1, 1,
1, 1, 2, 1, 1, 2, 1, 1, 2,
1, 1, 1, 1, 11, 1, 1, 1, 1, 1,
=============================
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Gcd(Fibonacci(n), Lucas(k)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 20 2015
  • Mathematica
    Flatten[Table[GCD[Fibonacci[n], LucasL[k]], {n, 20}, {k, n}]] (* Alonso del Arte, Dec 19 2015 *)

Formula

T(n, k) = Lucas(g), where g = gcd(n, k), if n/g is even; = 2 if n/g is odd and 3|g; = 1 otherwise.
Showing 1-2 of 2 results.