cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A111954 a(n) = A000129(n) + (-1)^n.

Original entry on oeis.org

1, 0, 3, 4, 13, 28, 71, 168, 409, 984, 2379, 5740, 13861, 33460, 80783, 195024, 470833, 1136688, 2744211, 6625108, 15994429, 38613964, 93222359, 225058680, 543339721, 1311738120, 3166815963, 7645370044, 18457556053, 44560482148, 107578520351
Offset: 0

Views

Author

Creighton Dement, Aug 23 2005

Keywords

Comments

a(n) + a(n+1) = A001333(n+1). Inverse binomial transform of A007070 (with prepended 1). Inverse invert transform of A077995.
Floretion Algebra Multiplication Program, FAMP Code: -4ibasejseq[J*D] with J = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and D = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,1},{1,0,3},40] (* Harvey P. Dale, Nov 24 2014 *)

Formula

a(n) = a(n-1) + 3*a(n-2) + a(n-3), n >= 3.
G.f.: (x-1)/((x+1)*(x^2+2*x-1)).
a(n) = (sqrt(2)/4)*((1 + sqrt(2))^n - (1 - sqrt(2))^n) + (-1)^n.
E.g.f.: cosh(x) - sinh(x) + exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 26 2024

A115312 a(n) = gcd(Lucas(n)-1, Fibonacci(n)+1).

Original entry on oeis.org

2, 2, 3, 2, 2, 1, 14, 2, 5, 2, 18, 1, 26, 2, 47, 2, 34, 1, 246, 2, 89, 2, 322, 1, 466, 2, 843, 2, 610, 1, 4414, 2, 1597, 2, 5778, 1, 8362, 2, 15127, 2, 10946, 1, 79206, 2, 28657, 2, 103682, 1, 150050, 2, 271443, 2, 196418, 1, 1421294, 2, 514229, 2, 1860498, 1
Offset: 1

Views

Author

Giovanni Resta, Jan 20 2006

Keywords

Comments

Here Lucas is: Lucas(1)=1, Lucas(2)=3 and, for n>2, Lucas(n) = Lucas(n-1) + Lucas(n-2). See A000032.
a(n) is prime for n = 1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 16, 20, 21, 22, 26, 28, 32, 33, 34, 38, 40, 44, 45, ... - Vincenzo Librandi, Dec 24 2015
350 of the first 1000 terms are primes. - Harvey P. Dale, Mar 25 2020

Examples

			a(15) = 47 since F(15) + 1 =13*47 and L(15) - 1 = 29*47.
		

Crossrefs

Programs

  • Magma
    [Gcd(Lucas(n)-1, Fibonacci(n)+1): n in [1..60]]; // Vincenzo Librandi, Dec 24 2015
    
  • Mathematica
    lucas[1]=1; lucas[2]=3; lucas[n_]:= lucas[n]= lucas[n-1] + lucas[n-2]; Table[GCD[lucas[i]-1, Fibonacci[i]+1], {i, 60}]
    GCD[#[[1]]-1,#[[2]]+1]&/@With[{nn=60},Thread[{LucasL[Range[ nn]],Fibonacci[ Range[nn]]}]] (* Harvey P. Dale, Mar 25 2020 *)
  • PARI
    a(n) = gcd(fibonacci(n+1)+fibonacci(n-1)-1,fibonacci(n)+1); \\ Altug Alkan, Dec 24 2015

A115314 a(n) = gcd(Lucas(n)+1, Fibonacci(n)-1).

Original entry on oeis.org

2, 4, 1, 2, 4, 1, 6, 4, 11, 2, 8, 1, 58, 4, 21, 2, 76, 1, 110, 4, 199, 2, 144, 1, 1042, 4, 377, 2, 1364, 1, 1974, 4, 3571, 2, 2584, 1, 18698, 4, 6765, 2, 24476, 1, 35422, 4, 64079, 2, 46368, 1, 335522, 4, 121393, 2, 439204, 1, 635622, 4, 1149851, 2, 832040, 1
Offset: 1

Views

Author

Giovanni Resta, Jan 20 2006

Keywords

Comments

Here Lucas is: Lucas(1)=1, Lucas(2)=3 and, for n>2, Lucas(n) = Lucas(n-1) + Lucas(n-2). See A000032.
a(n) is prime for n = 1, 4, 9, 10, 16, 21, 22, 28, 33, 34, 40, 46, 52, 58, 64, 70, 76, 81, 82, 88, 93, 94, ... - Vincenzo Librandi, Dec 24 2015

Examples

			a(15) = 21 = 3*7 since F(15) - 1 = 3*7*29 and L(15) + 1 = 3*5*7*13.
		

Crossrefs

Programs

  • Magma
    [Gcd(Lucas(n)+1, Fibonacci(n)-1): n in [1..60]]; // Vincenzo Librandi, Dec 24 2015
    
  • Mathematica
    lucas[1]=1; lucas[2]=3; lucas[n_]:= lucas[n]= lucas[n-1] + lucas[n-2]; Table[GCD[lucas[i]+1, Fibonacci[i]-1], {i, 60}]
    Module[{nn=60,l,f},l=LucasL[Range[nn]]+1;f=Fibonacci[Range[nn]]-1;GCD@@@ Thread[ {l,f}]] (* Harvey P. Dale, Apr 29 2020 *)
  • PARI
    a(n) = gcd(fibonacci(n+1)+fibonacci(n-1)+1,fibonacci(n)-1); \\ Altug Alkan, Dec 24 2015

A111946 Triangle read by rows: T(n,k) = gcd(Fibonacci(n), Fibonacci(k)), 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 8, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 3, 1, 1, 1, 21, 1, 1, 2, 1, 1, 2, 1, 1, 34, 1, 1, 1, 1, 5, 1, 1, 1, 1, 55, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 89, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Comments

The function T(n, k) is defined for all integers n, k but only the values for 1 <= k <= n as a triangular array are listed here.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 2;
  1, 1, 1, 3;
  1, 1, 1, 1, 5;
  1, 1, 2, 1, 1, 8;
  1, 1, 1, 1, 1, 1, 13;
  1, 1, 1, 3, 1, 1,  1, 21;
  1, 1, 2, 1, 1, 2,  1,  1, 34;
  1, 1, 1, 1, 5, 1,  1,  1,  1, 55;
  ...
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Gcd(Fibonacci(n), Fibonacci(k)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 20 2015
  • Mathematica
    T[ n_, k_] := Fibonacci @ GCD[ n, k] (* Michael Somos, Jul 18 2011 *)
  • PARI
    {T(n, k) = fibonacci( gcd( n, k))} /* Michael Somos, Jul 18 2011 */
    

Formula

T(n, k) = Fibonacci(gcd(n, k)).
T(n, k) = T(k, n) = T(-n, k) = T(n, -k) = T(n, n+k) = T(n+k, k). - Michael Somos, Jul 18 2011

A111957 Triangle read by rows: T(n,k) = gcd(Fibonacci(n), Lucas(k)), 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 18, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2005

Keywords

Examples

			Triangle begins:
1,
1, 1,
1, 1, 2,
1, 3, 1, 1,
1, 1, 1, 1, 1,
1, 1, 4, 1, 1, 2,
1, 1, 1, 1, 1, 1, 1,
1, 3, 1, 7, 1, 3, 1, 1,
1, 1, 2, 1, 1, 2, 1, 1, 2,
1, 1, 1, 1, 11, 1, 1, 1, 1, 1,
=============================
		

Crossrefs

Programs

  • Magma
    /* As triangle */ [[Gcd(Fibonacci(n), Lucas(k)): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Dec 20 2015
  • Mathematica
    Flatten[Table[GCD[Fibonacci[n], LucasL[k]], {n, 20}, {k, n}]] (* Alonso del Arte, Dec 19 2015 *)

Formula

T(n, k) = Lucas(g), where g = gcd(n, k), if n/g is even; = 2 if n/g is odd and 3|g; = 1 otherwise.

A115311 a(n) = gcd(Lucas(n)-1, Fibonacci(n)-1).

Original entry on oeis.org

0, 2, 1, 2, 2, 1, 4, 2, 3, 2, 22, 1, 8, 2, 29, 2, 42, 1, 76, 2, 55, 2, 398, 1, 144, 2, 521, 2, 754, 1, 1364, 2, 987, 2, 7142, 1, 2584, 2, 9349, 2, 13530, 1, 24476, 2, 17711, 2, 128158, 1, 46368, 2, 167761, 2, 242786, 1, 439204, 2, 317811, 2, 2299702, 1
Offset: 1

Views

Author

Giovanni Resta, Jan 20 2006

Keywords

Comments

Here Lucas is: Lucas(1)=1, Lucas(2)=3 and, for n>2, Lucas(n) = Lucas(n-1) + Lucas(n-2). See A000032.
a(n) is prime for n = 2, 4, 5, 8, 9, 10, 14, 15, 16, 20, 22, 26, 27, 28, 32, 34, 38, 39, 40, 44, 46, ... - Vincenzo Librandi, Dec 24 2015

Examples

			a(15) = 29 since F(15) - 1 = 3*7*29 and L(15) - 1 = 29*49.
		

Crossrefs

Programs

  • Magma
    [Gcd(Lucas(n)-1, Fibonacci(n)-1): n in [1..60]]; // Vincenzo Librandi, Dec 24 2015
    
  • Mathematica
    lucas[1]=1; lucas[2]=3; lucas[n_]:= lucas[n]= lucas[n-1] + lucas[n-2]; Table[GCD[lucas[i]-1, Fibonacci[i]-1], {i, 60}]
    Table[GCD[LucasL[n]-1,Fibonacci[n]-1],{n,60}] (* Harvey P. Dale, Sep 25 2017 *)
  • PARI
    a(n) = gcd(fibonacci(n+1)+fibonacci(n-1)-1,fibonacci(n)-1); \\ Altug Alkan, Dec 24 2015

A115313 a(n) = gcd(Lucas(n)+1, Fibonacci(n)+1).

Original entry on oeis.org

2, 2, 1, 4, 6, 1, 2, 2, 7, 4, 10, 1, 18, 2, 13, 4, 94, 1, 34, 2, 123, 4, 178, 1, 322, 2, 233, 4, 1686, 1, 610, 2, 2207, 4, 3194, 1, 5778, 2, 4181, 4, 30254, 1, 10946, 2, 39603, 4, 57314, 1, 103682, 2, 75025, 4, 542886, 1, 196418, 2, 710647, 4, 1028458, 1
Offset: 1

Views

Author

Giovanni Resta, Jan 20 2006

Keywords

Comments

Here Lucas is: Lucas(1)=1, Lucas(2)=3 and, for n>2, Lucas(n) = Lucas(n-1)+Lucas(n-2). See A000032.
a(n) is prime for n = 1, 2, 7, 8, 9, 14, 15, 20, 26, 27, 32, 33, 38, 44, 50, 56, 62, 68, 74, 80, 86, 87, ... - Vincenzo Librandi, Dec 24 2015

Examples

			a(15) = 13 since F(15) + 1 = 13*47 and L(15) + 1 = 3*5*7*13.
		

Crossrefs

Programs

  • Magma
    [Gcd(Lucas(n)+1, Fibonacci(n)+1): n in [1..60]]; // Vincenzo Librandi, Dec 24 2015
    
  • Mathematica
    lucas[1]=1; lucas[2]=3; lucas[n_]:= lucas[n]= lucas[n-1] + lucas[n-2]; Table[GCD[lucas[i]+1, Fibonacci[i]+1], {i, 60}]
  • PARI
    a(n) = gcd(fibonacci(n+1)+fibonacci(n-1)+1,fibonacci(n)+1); \\ Altug Alkan, Dec 24 2015

A111955 a(n) = A078343(n) + (-1)^n.

Original entry on oeis.org

0, 1, 4, 7, 20, 45, 112, 267, 648, 1561, 3772, 9103, 21980, 53061, 128104, 309267, 746640, 1802545, 4351732, 10506007, 25363748, 61233501, 147830752, 356895003, 861620760, 2080136521, 5021893804, 12123924127, 29269742060, 70663408245
Offset: 0

Views

Author

Creighton Dement, Aug 25 2005

Keywords

Comments

This sequence is a companion sequence to A111954 (compare formula / program code). Three other companion sequences (i.e., they are generated by the same floretion given in the program code) are A105635, A097076 and A100828.
Floretion Algebra Multiplication Program, FAMP Code: 4kbasejseq[J*D] with J = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and D = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e. (an initial term 0 was added to the sequence)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,1},{0,1,4},40] (* Harvey P. Dale, Mar 12 2015 *)

Formula

a(n) + a(n+1) = A048655(n).
a(n) = a(n-1) + 3*a(n-2) + a(n-3), n >= 3; a(n) = (-1/4*sqrt(2)+1)*(1-sqrt(2))^n + (1/4*sqrt(2)+1)*(1+sqrt(2))^n - (-1)^n;
G.f.: -x*(1+3*x) / ( (1+x)*(x^2+2*x-1) ). - R. J. Mathar, Oct 02 2012
E.g.f.: cosh(x) - exp(x)*cosh(sqrt(2)*x) - sinh(x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 26 2024
Showing 1-8 of 8 results.