cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A111954 a(n) = A000129(n) + (-1)^n.

Original entry on oeis.org

1, 0, 3, 4, 13, 28, 71, 168, 409, 984, 2379, 5740, 13861, 33460, 80783, 195024, 470833, 1136688, 2744211, 6625108, 15994429, 38613964, 93222359, 225058680, 543339721, 1311738120, 3166815963, 7645370044, 18457556053, 44560482148, 107578520351
Offset: 0

Views

Author

Creighton Dement, Aug 23 2005

Keywords

Comments

a(n) + a(n+1) = A001333(n+1). Inverse binomial transform of A007070 (with prepended 1). Inverse invert transform of A077995.
Floretion Algebra Multiplication Program, FAMP Code: -4ibasejseq[J*D] with J = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and D = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,1},{1,0,3},40] (* Harvey P. Dale, Nov 24 2014 *)

Formula

a(n) = a(n-1) + 3*a(n-2) + a(n-3), n >= 3.
G.f.: (x-1)/((x+1)*(x^2+2*x-1)).
a(n) = (sqrt(2)/4)*((1 + sqrt(2))^n - (1 - sqrt(2))^n) + (-1)^n.
E.g.f.: cosh(x) - sinh(x) + exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 26 2024