A112020 Number of partitions of n into distinct semiprimes.
1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 2, 1, 0, 1, 3, 2, 2, 1, 2, 3, 5, 2, 2, 3, 5, 4, 5, 3, 4, 6, 9, 6, 5, 6, 10, 10, 9, 7, 9, 12, 14, 12, 11, 14, 18, 17, 16, 16, 19, 21, 24, 21, 23, 26, 29, 30, 32, 31, 33, 39, 40, 39, 41, 45, 49, 54, 53, 54, 59, 68, 66, 68, 70, 78, 82, 88, 86, 93, 101
Offset: 0
Keywords
Examples
For n=4 one partition: {2*2}. For n=6 one partition: {2*3}. For n=10 two partitions: {2*2+2*3,2*5}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
h:= proc(n) option remember; `if`(n=0, 0, `if`(numtheory[bigomega](n)=2, n, h(n-1))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n-i, h(min(n-i, i-1)))+b(n, h(i-1)))) end: a:= n-> b(n, h(n)): seq(a(n), n=0..100); # Alois P. Heinz, Mar 19 2024
-
Mathematica
nmax = 100; CoefficientList[Series[Product[1+x^(Prime[j] Prime[k]), {j, 1, nmax}, {k, j, nmax}], {x, 0, nmax}], x] (* Jean-François Alcover, Nov 10 2021 *)