A112033 a(n) = 3 * 2^(floor(n/2) + 1 + (-1)^n).
12, 3, 24, 6, 48, 12, 96, 24, 192, 48, 384, 96, 768, 192, 1536, 384, 3072, 768, 6144, 1536, 12288, 3072, 24576, 6144, 49152, 12288, 98304, 24576, 196608, 49152, 393216, 98304, 786432, 196608, 1572864, 393216, 3145728, 786432, 6291456, 1572864
Offset: 0
References
- George Pólya and Gábor Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chapter 4, Sect. 1, Problem 148.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..100
- Index entries for linear recurrences with constant coefficients, signature (0,2).
Programs
-
Maple
A112033:=n->3*2^(floor(n/2) + 1 + (-1)^n); seq(A112033(k), k=0..50); # Wesley Ivan Hurt, Nov 01 2013
-
Mathematica
Table[3*2^(Floor[n/2] + 1 + (-1)^n), {n,0,50}] (* Wesley Ivan Hurt, Nov 01 2013 *)
-
PARI
a(n) = 3 * 2^(n\2 + 1 + (-1)^n); \\ Michel Marcus, Nov 02 2013
-
Python
def A112033(n): return 3*(1<<(n>>1)+(int(not n&1)<<1)) # Chai Wah Wu, Jan 17 2023
Formula
From Ralf Stephan, Jul 16 2013: (Start)
Recurrence: a(n) = 2a(n-2), a(0)=12, a(1)=3.
G.f.: (6*x+24)/(1-2*x^2). (End)
From Amiram Eldar, May 11 2025: (Start)
Sum_{n>=0} 1/a(n) = 5/6.
Sum_{n>=0} (-1)^n/a(n) = -1/2. (End)