cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A112270 One third of the sum of the first n primes, when an integer.

Original entry on oeis.org

43, 127, 167, 213, 321, 387, 457, 531, 617, 709, 809, 1029, 1149, 1277, 1409, 1863, 2027, 2290, 3397, 3629, 4113, 4367, 4629, 4899, 5179, 5467, 5761, 6063, 6371, 7516, 7864, 8600, 8980, 9368, 10168, 10578, 11856, 12296, 12746, 13204, 13674, 14156
Offset: 1

Views

Author

Jonathan Vos Post, Nov 30 2005

Keywords

Examples

			a(1) = 43 = (2+3+5+7+11+13+17+19+23+29)/3 = A007504(10)/3 = 129/3.
a(2) = 127 = A007504(16)/3 = 381/3.
a(3) = 167 = A007504(18)/3 = 501/3.
a(4) = 213 = A007504(20)/3 = 639/3.
a(5) = 321 = A007504(24)/3 = 963/3.
a(6) = 387 = A007504(26)/3 = 1161/3.
		

References

  • Bach, E. and Shallit, J. Sect. 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.
  • H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.

Crossrefs

Programs

  • Mathematica
    s = 0; lst = {}; Do[s = s + Prime[n]; If[Mod[s, 3] == 0, AppendTo[lst, s/3]], {n, 130}]; lst (* Robert G. Wilson v *)
    Select[Accumulate[Prime[Range[200]]]/3,IntegerQ] (* Harvey P. Dale, Feb 20 2018 *)

Formula

{a(n)} = {A007504(k)/3 iff 3 | A007504(k)}. {a(n)} = {(p_1 + p_2 + ... + p_k)/3 iff the sum is an integer}. It is necessary but not sufficient for k to be even.

Extensions

More terms from Robert G. Wilson v, Nov 30 2005

A112271 One fifth of the sum of the first n primes, when an integer.

Original entry on oeis.org

1, 2, 20, 32, 88, 212, 296, 344, 1070, 1166, 1374, 1655, 2248, 2698, 3368, 3730, 3916, 4936, 5160, 5388, 6725, 6983, 8788, 11338, 12382, 12923, 13480, 15026, 16244, 17717, 19033, 19481, 19937, 21108, 24584, 29191, 30345, 33008, 33921, 34850
Offset: 1

Views

Author

Jonathan Vos Post, Nov 30 2005

Keywords

Examples

			a(1) = 1 = (2+3)/5 = A007504(2)/5 = 5/5.
a(2) = 2 = (2+3+5)/5 = A007504(3)/5 = 10/5.
a(3) = 20 = (2+3+5+7+11+13+17+19+23)/5 = A007504(9)/5 = 100/5.
a(4) = 32 = (2+3+5+7+11+13+17+19+23+29+31)/5 = A007504(11)/5 = 160/5.
a(5) = 88 = A007504(17)/5 = 440/5.
a(6) = 212 = A007504(25)/5 = 1060/5.
a(7) = 296 = A007504(29)/5 = 1480/5.
a(8) = 344 = A007504(31)/5 = 1720/5.
		

References

  • Bach, E. and Shallit, J. Sect. 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.
  • H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.

Crossrefs

Programs

  • Mathematica
    s = 0; lst = {}; Do[s = s + Prime[n]; If[Mod[s, 5] == 0, AppendTo[lst, s/5]], {n, 250}]; lst (* Robert G. Wilson v, Dec 04 2005 *)
    Select[Accumulate[Prime[Range[400]]]/5,IntegerQ] (* Harvey P. Dale, May 03 2017 *)

Formula

{a(n)} = {A007504(k)/5 iff 5 | A007504(k)}. {a(n)} = {(p_1 + p_2 + ... + p_k)/5 iff the sum is an integer}. It is sufficient that A007504(k) == 0 (mod 10), but not necessary (the last five consecutive primes ending in 1 can give a solution). It is necessary that k = 2 or k is odd.

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Dec 04 2005

A112272 One seventh of the sum of the first n primes, when an integer.

Original entry on oeis.org

4, 11, 34, 113, 284, 441, 634, 731, 943, 1226, 1657, 2343, 2469, 3767, 3931, 4271, 4712, 5759, 5963, 7154, 8221, 8467, 8971, 9362, 9763, 12655, 13279, 13595, 13915, 15941, 17560, 19641, 21261, 21675, 22091, 22937, 23363, 23793, 24671, 26702
Offset: 1

Views

Author

Jonathan Vos Post, Nov 30 2005

Keywords

Comments

a(1) = 4 and a(6) = 441 are perfect squares. What is the next term in this subsequence? Answer from Stefan Steinerberger: a(103)=315844=562^2.

Examples

			a(1) = 4 = (2+3+5+7+11)/7 = A007504(5)/7 = 28/7.
a(2) = 11 = (2+3+5+7+11+13+17+19)/5 = A007504(8)/7 = 77/7.
a(3) = 34 = A007504(13)/5 = 238/7.
a(4) = 113 = A007504(22)/5 = 791/7.
a(5) = 284 = A007504(33)/5 = 1988/7.
a(6) = 441 = A007504(40)/5 = 3087/7.
		

References

  • Bach, E. and Shallit, J. Sect. 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.
  • H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.

Crossrefs

Programs

  • Mathematica
    s = 0; lst = {}; Do[s = s + Prime[n]; If[Mod[s, 7] == 0, AppendTo[lst, s/7]], {n, 270}]; lst (* Robert G. Wilson v *)
    Select[Accumulate[Prime[Range[300]]]/7,IntegerQ] (* Harvey P. Dale, Nov 26 2014 *)

Formula

{a(n)} = {A007504(k)/7 iff 7 | A007504(k)}. {a(n)} = {(p_1 + p_2 + ... + p_k)/7 iff the sum is an integer}.

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, Dec 02 2005
Showing 1-3 of 3 results.