A112270 One third of the sum of the first n primes, when an integer.
43, 127, 167, 213, 321, 387, 457, 531, 617, 709, 809, 1029, 1149, 1277, 1409, 1863, 2027, 2290, 3397, 3629, 4113, 4367, 4629, 4899, 5179, 5467, 5761, 6063, 6371, 7516, 7864, 8600, 8980, 9368, 10168, 10578, 11856, 12296, 12746, 13204, 13674, 14156
Offset: 1
Examples
a(1) = 43 = (2+3+5+7+11+13+17+19+23+29)/3 = A007504(10)/3 = 129/3. a(2) = 127 = A007504(16)/3 = 381/3. a(3) = 167 = A007504(18)/3 = 501/3. a(4) = 213 = A007504(20)/3 = 639/3. a(5) = 321 = A007504(24)/3 = 963/3. a(6) = 387 = A007504(26)/3 = 1161/3.
References
- Bach, E. and Shallit, J. Sect. 2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, 1996.
- H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Leo Moser, Notes on number theory. III. On the sum of consecutive primes, Canad. Math. Bull. 6 (1963), pp. 159-161.
- Eric Weisstein's World of Mathematics, Prime Sums.
Programs
-
Mathematica
s = 0; lst = {}; Do[s = s + Prime[n]; If[Mod[s, 3] == 0, AppendTo[lst, s/3]], {n, 130}]; lst (* Robert G. Wilson v *) Select[Accumulate[Prime[Range[200]]]/3,IntegerQ] (* Harvey P. Dale, Feb 20 2018 *)
Formula
Extensions
More terms from Robert G. Wilson v, Nov 30 2005
Comments