cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112091 Number of idempotent order-preserving partial transformations (of an n-element chain).

Original entry on oeis.org

1, 2, 6, 21, 76, 276, 1001, 3626, 13126, 47501, 171876, 621876, 2250001, 8140626, 29453126, 106562501, 385546876, 1394921876, 5046875001, 18259765626, 66064453126, 239023437501, 864794921876, 3128857421876, 11320312500001
Offset: 0

Views

Author

Abdullahi Umar, Aug 25 2008

Keywords

Examples

			a(2) = 6 because there are exactly 6 idempotent order-preserving partial transformations (on a 2-element chain), namely: the empty map, (1)->(1), (2)->(2), (1,2)->(1,1), (1,2)->(1,2), (1,2)->(2,2); the mappings are coordinate-wise.
		

Programs

  • Magma
    [ n eq 1 select 1 else n eq 2 select 2 else n eq 3 select 6 else 6*Self(n-1)-10*Self(n-2)+ 5*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 21 2011
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==1+5(a[n-1]-a[n-2])},a[n], {n,30}] (* or *) LinearRecurrence[{6,-10,5},{1,2,6},31] (* Harvey P. Dale, Aug 20 2011 *)
  • PARI
    Vec((2*x-1)^2/(1-x)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Aug 21 2011

Formula

a(n) = ((sqrt(5))^(n - 1))*(((sqrt(5) + 1)/2)^n - ((sqrt(5) - 1)/2)^n) + 1. [corrected by Jason Yuen, Sep 06 2024]
a(n) = 1 + 5*(a(n-1) - a(n-2)), a(0) = 1, a(1) = 2.
G.f.: (1 - 2*x)^2/((1 - x)*(1 - 5*x + 5*x^2)). Convolution of A081567 with the sequence 1, -1, -1, -1 (-1 continued). - R. J. Mathar, Sep 06 2008
a(n) = 1 + A030191(n-1). - R. J. Mathar, Jun 20 2011
a(n) = 6*a(n-1) - 10*a(n-2) + 5*a(n-3); a(0) = 1, a(1) = 2, a(2) = 6. - Harvey P. Dale, Aug 20 2011
E.g.f.: exp(x) + (exp((5 + sqrt(5))*x/2) - exp((5 - sqrt(5))*x/2))/sqrt(5). - Franck Maminirina Ramaharo, Nov 09 2018