cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A112846 Number of riffs on n or fewer nodes. Number of rotes on 2n+1 or fewer nodes.

Original entry on oeis.org

1, 2, 4, 10, 30, 103, 384, 1508, 6126, 25513, 108278, 466523, 2034981, 8968746, 39875940, 138760603, 178636543, 3026583484, 16028356176, 75647274620, 350111055991, 1618175863400, 7495933933620, 34821723061950
Offset: 0

Views

Author

Jon Awbrey, Oct 04 2005, based on calculations by Vladeta Jovovic and David W. Wilson

Keywords

Comments

Partial sums of A061396.

Crossrefs

A112095 Positive integers sorted by rote weight, rote height and rote wayage.

Original entry on oeis.org

1, 2, 3, 4, 9, 6, 5, 7, 8, 16, 12, 18, 13, 23, 25, 27, 49, 64, 81, 512, 10, 14, 11, 17, 19, 32, 53, 128, 256, 65536, 36, 37, 61, 125, 169, 343, 529, 625, 729, 2401, 4096, 19683, 262144, 15, 20, 21, 24, 26, 28, 46, 48, 50, 54, 98, 162, 29, 41, 43, 83, 97, 103, 121, 227
Offset: 1

Views

Author

Jon Awbrey, Sep 08 2005, corrected Oct 11 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote height in gammas is h(m) = A109301(m) and the rote wayage or root degree is w(m) = omega(m) = A001221(m).

Examples

			Table of Primal Functions, Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g h w | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 0 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 1 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 2 1 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 2 1 | 2 | 2 | 2
================================================================
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 2 1 | 1 | ` |
----------------+---------------------------+-------+---+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 2 2 | 1 | 2 |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 3 1 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 3 1 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 3 1 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 3 1 | 4 | 4 | 6
================================================================
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 2 2 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 2 2 | 2 | 2 |
----------------+---------------------------+-------+---+---+---
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 3 1 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 3 1 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 3 1 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 3 1 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 3 1 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 3 1 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 3 1 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 3 1 | 8 | ` |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 3 2 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 3 2 | 2 |10 |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 4 1 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 4 1 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 4 1 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 4 1 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 4 1 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 4 1 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 4 1 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 4 1 | 8 | 8 |20
================================================================
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `36 | 5 2 2 | 1 | 1 |
----------------+---------------------------+-------+---+---+---
12:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `37 | 5 3 1 | ` | ` |
18:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `61 | 5 3 1 | ` | ` |
3:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 125 | 5 3 1 | ` | ` |
6:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 169 | 5 3 1 | ` | ` |
4:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 343 | 5 3 1 | ` | ` |
9:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 529 | 5 3 1 | ` | ` |
3:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 625 | 5 3 1 | ` | ` |
2:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 729 | 5 3 1 | ` | ` |
4:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2401 | 5 3 1 | ` | ` |
1:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `4096 | 5 3 1 | ` | ` |
2:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 19683 | 5 3 1 | ` | ` |
1:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `262144 | 5 3 1 |12 | ` |
----------------+---------------------------+-------+---+---+---
2:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `15 | 5 3 2 | ` | ` |
1:2 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `20 | 5 3 2 | ` | ` |
2:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `21 | 5 3 2 | ` | ` |
1:3 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `24 | 5 3 2 | ` | ` |
1:1 6:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `26 | 5 3 2 | ` | ` |
1:2 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `28 | 5 3 2 | ` | ` |
1:1 9:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `46 | 5 3 2 | ` | ` |
1:4 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `48 | 5 3 2 | ` | ` |
1:1 3:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `50 | 5 3 2 | ` | ` |
1:1 2:3 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `54 | 5 3 2 | ` | ` |
1:1 4:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `98 | 5 3 2 | ` | ` |
1:1 2:4 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 162 | 5 3 2 |12 |24 |
----------------+---------------------------+-------+---+---+---
10:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `29 | 5 4 1 | ` | ` |
13:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `41 | 5 4 1 | ` | ` |
14:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `43 | 5 4 1 | ` | ` |
23:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `83 | 5 4 1 | ` | ` |
25:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `97 | 5 4 1 | ` | ` |
27:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 103 | 5 4 1 | ` | ` |
5:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 121 | 5 4 1 | ` | ` |
49:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 227 | 5 4 1 | ` | ` |
2:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 243 | 5 4 1 | ` | ` |
7:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 289 | 5 4 1 | ` | ` |
64:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 311 | 5 4 1 | ` | ` |
8:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 361 | 5 4 1 | ` | ` |
81:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 419 | 5 4 1 | ` | ` |
1:10` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1024 | 5 4 1 | ` | ` |
2:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2187 | 5 4 1 | ` | ` |
16:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2809 | 5 4 1 | ` | ` |
512:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `3671 | 5 4 1 | ` | ` |
2:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `6561 | 5 4 1 | ` | ` |
1:13` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `8192 | 5 4 1 | ` | ` |
1:14` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 16384 | 5 4 1 | ` | ` |
1:23` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` 8388608 | 5 4 1 | ` | ` |
1:25` ` ` ` ` ` | ` ` ` ` ` ` ` ` `33554432 | 5 4 1 | ` | ` |
2:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` `43046721 | 5 4 1 | ` | ` |
1:27` ` ` ` ` ` | ` ` ` ` ` ` ` ` 134217728 | 5 4 1 | ` | ` |
1:49` ` ` ` ` ` | ` ` ` ` ` 562949953421312 | 5 4 1 | ` | ` |
1:64` ` ` ` ` ` | ` ` `18446744073709551616 | 5 4 1 | ` | ` |
1:81` ` ` ` ` ` | 2417851639229258349412352 | 5 4 1 | ` | ` |
1:512 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^512 | 5 4 1 |28 | ` |
----------------+---------------------------+-------+---+---+---
1:1 5:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `22 | 5 4 2 | ` | ` |
1:1 7:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `34 | 5 4 2 | ` | ` |
1:1 8:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `38 | 5 4 2 | ` | ` |
1:1 16:1` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 106 | 5 4 2 | 4 |32 |
----------------+---------------------------+-------+---+---+---
11:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `31 | 5 5 1 | ` | ` |
17:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `59 | 5 5 1 | ` | ` |
19:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `67 | 5 5 1 | ` | ` |
32:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 131 | 5 5 1 | ` | ` |
53:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 241 | 5 5 1 | ` | ` |
128:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 719 | 5 5 1 | ` | ` |
256:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1619 | 5 5 1 | ` | ` |
1:11` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2048 | 5 5 1 | ` | ` |
1:17` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `131072 | 5 5 1 | ` | ` |
1:19` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `524288 | 5 5 1 | ` | ` |
65536:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` `821641 | 5 5 1 | ` | ` |
1:32` ` ` ` ` ` | ` ` ` ` ` ` ` `4294967296 | 5 5 1 | ` | ` |
1:53` ` ` ` ` ` | ` ` ` ` `9007199254740992 | 5 5 1 | ` | ` |
1:128 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^128 | 5 5 1 | ` | ` |
1:256 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^256 | 5 5 1 | ` | ` |
1:65536 ` ` ` ` | ` ` ` ` ` ` ` ` ` 2^65536 | 5 5 1 |16 |16 |73
================================================================
a = this sequence
g = rote weight in gammas = A062537
h = rote height in gammas = A109301
w = rote wayage in gammas = A001221
r = number in (g,h,w) set = A112096
s = count in (g, h) class = A111793
t = count in weight class = A061396
		

Crossrefs

A111798 Positive integers sorted by rote height (A109301) and omega (A001221).

Original entry on oeis.org

1, 2, 3, 4, 9, 6, 12, 18, 36, 5, 7, 8, 13, 16, 23, 25, 27, 37, 49, 61, 64, 81, 125, 151, 169, 343, 512, 529, 625, 729, 1369, 2197, 2401, 3721, 4096, 12167, 15625, 19683, 22801, 28561, 50653, 117649, 226981, 262144, 279841, 531441, 1874161, 1953125, 3442951
Offset: 1

Views

Author

Jon Awbrey, Sep 01 2005 - Sep 10 2005

Keywords

Comments

Positive integers m sorted by h(m) = A109301(m) and w(m) = A001221(m).
Defining the "wayage" of a rooted tree to be its root degree, the rote corresponding to the positive integer m has a wayage of w(m) = omega(m) = A001221(m).

Examples

			Table of Primal Functions, Codes, Sort Parameters and Subtotals
Primal Function | ` ` ` ` ` Primal Code ` ` = ` ` a | h w | s | t
----------------+-----------------------------------+-----+---+---
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 | 1 | 1
----------------+-----------------------------------+-----+---+---
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 | 1 | 1
----------------+-----------------------------------+-----+---+---
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 1 | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 1 | ` |
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 9 | 2 1 | 3 |
----------------+-----------------------------------+-----+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 6 | 2 2 | ` |
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `12 | 2 2 | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `18 | 2 2 | ` |
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `36 | 2 2 | 4 | 7
----------------+-----------------------------------+-----+---+---
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 1 | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `16 | 3 1 | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `64 | 3 1 | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 512 | 3 1 | ` |
1:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `4096 | 3 1 | ` |
1:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `262144 | 3 1 | ` |
1:36` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 68719476736 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `27 | 3 1 | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `81 | 3 1 | ` |
2:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 729 | 3 1 | ` |
2:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 19683 | 3 1 | ` |
2:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `531441 | 3 1 | ` |
2:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 387420489 | 3 1 | ` |
2:36` ` ` ` ` ` | ` ` ` ` ` ` ` `150094635296999121 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 1 | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 1 | ` |
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `13 | 3 1 | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `23 | 3 1 | ` |
12:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `37 | 3 1 | ` |
18:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `61 | 3 1 | ` |
36:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 151 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `25 | 3 1 | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `49 | 3 1 | ` |
6:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 169 | 3 1 | ` |
9:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 529 | 3 1 | ` |
12:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `1369 | 3 1 | ` |
18:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `3721 | 3 1 | ` |
36:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 22801 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
3:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 125 | 3 1 | ` |
3:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 625 | 3 1 | ` |
3:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 15625 | 3 1 | ` |
3:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 1953125 | 3 1 | ` |
3:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 244140625 | 3 1 | ` |
3:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 3814697265625 | 3 1 | ` |
3:36` ` ` ` ` ` | ` ` ` `14551915228366851806640625 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
4:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` 343 | 3 1 | ` |
4:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `2401 | 3 1 | ` |
4:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `117649 | 3 1 | ` |
4:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` `40353607 | 3 1 | ` |
4:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 13841287201 | 3 1 | ` |
4:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` `1628413597910449 | 3 1 | ` |
4:36` ` ` ` ` ` | ` 2651730845859653471779023381601 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
6:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` `2197 | 3 1 | ` |
6:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 28561 | 3 1 | ` |
6:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 4826809 | 3 1 | ` |
6:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 10604499373 | 3 1 | ` |
6:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `23298085122481 | 3 1 | ` |
6:18` ` ` ` ` ` | ` ` ` ` ` ` 112455406951957393129 | 3 1 | ` |
6:36` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 13^36 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
9:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 12167 | 3 1 | ` |
9:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `279841 | 3 1 | ` |
9:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 148035889 | 3 1 | ` |
9:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 1801152661463 | 3 1 | ` |
9:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` 21914624432020321 | 3 1 | ` |
9:18` ` ` ` ` ` | ` ` ` ` 3244150909895248285300369 | 3 1 | ` |
9:36` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 23^36 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
12:3` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 50653 | 3 1 | ` |
12:4` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 1874161 | 3 1 | ` |
12:6` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `2565726409 | 3 1 | ` |
12:9` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` 129961739795077 | 3 1 | ` |
12:12 ` ` ` ` ` | ` ` ` ` ` ` ` 6582952005840035281 | 3 1 | ` |
12:18 ` ` ` ` ` | ` ` 16890053810563300749953435929 | 3 1 | ` |
12:36 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 37^36 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
18:3` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `226981 | 3 1 | ` |
18:4` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` `13845841 | 3 1 | ` |
18:6` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 51520374361 | 3 1 | ` |
18:9` ` ` ` ` ` | ` ` ` ` ` ` ` ` 11694146092834141 | 3 1 | ` |
18:12 ` ` ` ` ` | ` ` ` ` ` `2654348974297586158321 | 3 1 | ` |
18:18 ` ` ` ` ` | 136753052840548005895349735207881 | 3 1 | ` |
18:36 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` 61^36 | 3 1 | ` |
` ` ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` | ` ` | ` |
36:3` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 3442951 | 3 1 | ` |
36:4` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 519885601 | 3 1 | ` |
36:6` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `11853911588401 | 3 1 | ` |
36:9` ` ` ` ` ` | ` ` ` ` ` ` `40812436757196811351 | 3 1 | ` |
36:12 ` ` ` ` ` | ` ` ` 140515219945627518837736801 | 3 1 | ` |
36:18 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `151^18 | 3 1 | ` |
36:36 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` `151^36 | 3 1 |77 |
----------------+-----------------------------------+-----+---+---
The last part is left unsorted to show the method of construction.
a (when sorted ) = this sequence
h = rote height in gammas = A109301
w = rote wayage in gammas = A001221
s = count in (h, w) class = A111799
t = count in height class = A109300
		

Crossrefs

A112480 Positive integers sorted by rote weight, rote wagage and rote height.

Original entry on oeis.org

1, 2, 3, 4, 9, 5, 7, 8, 16, 6, 13, 23, 25, 27, 49, 64, 81, 512, 11, 17, 19, 32, 53, 128, 256, 65536, 12, 18, 10, 14, 37, 61, 125, 169, 343, 529, 625, 729, 2401, 4096, 19683, 262144, 29, 41, 43, 83, 97, 103, 121, 227, 243, 289, 311, 361, 419, 1024, 2187, 2809, 3671
Offset: 1

Views

Author

Jon Awbrey, Sep 27 2005

Keywords

Comments

For positive integer m, the rote weight in gammas is g(m) = A062537(m), the rote wayage or root degree is w(m) = omega(m) = A001221(m) and the rote height in gammas is h(m) = A109301(m).

Examples

			Table of Primal Functions, Codes, Sort Parameters and Subtotals
================================================================
Primal Function | ` ` ` Primal Code ` = ` a | g w h | r | s | t
================================================================
{ } ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 1 | 0 0 0 | 1 | 1 | 1
================================================================
1:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 2 | 1 1 1 | 1 | 1 | 1
================================================================
2:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 3 | 2 1 2 | ` | ` |
1:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 4 | 2 1 2 | 2 | 2 | 2
================================================================
2:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 9 | 3 1 2 | 1 | ` |
----------------+---------------------------+-------+---+---+---
3:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 5 | 3 1 3 | ` | ` |
4:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 7 | 3 1 3 | ` | ` |
1:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 8 | 3 1 3 | ` | ` |
1:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `16 | 3 1 3 | 4 | 5 |
----------------+---------------------------+-------+---+---+---
1:1 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` 6 | 3 2 2 | 1 | 1 | 6
================================================================
6:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `13 | 4 1 3 | ` | ` |
9:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `23 | 4 1 3 | ` | ` |
3:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `25 | 4 1 3 | ` | ` |
2:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `27 | 4 1 3 | ` | ` |
4:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `49 | 4 1 3 | ` | ` |
1:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `64 | 4 1 3 | ` | ` |
2:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `81 | 4 1 3 | ` | ` |
1:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 512 | 4 1 3 | 8 | ` |
----------------+---------------------------+-------+---+---+---
5:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `11 | 4 1 4 | ` | ` |
7:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `17 | 4 1 4 | ` | ` |
8:1 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `19 | 4 1 4 | ` | ` |
1:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `32 | 4 1 4 | ` | ` |
16:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `53 | 4 1 4 | ` | ` |
1:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 128 | 4 1 4 | ` | ` |
1:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 256 | 4 1 4 | ` | ` |
1:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 65536 | 4 1 4 | 8 |16 |
----------------+---------------------------+-------+---+---+---
1:2 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `12 | 4 2 2 | ` | ` |
1:1 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `18 | 4 2 2 | 2 | ` |
----------------+---------------------------+-------+---+---+---
1:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `10 | 4 2 3 | ` | ` |
1:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `14 | 4 2 3 | 2 | 4 |20
================================================================
12:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `37 | 5 1 3 | ` | ` |
18:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `61 | 5 1 3 | ` | ` |
3:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 125 | 5 1 3 | ` | ` |
6:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 169 | 5 1 3 | ` | ` |
4:3 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 343 | 5 1 3 | ` | ` |
9:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 529 | 5 1 3 | ` | ` |
3:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 625 | 5 1 3 | ` | ` |
2:6 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 729 | 5 1 3 | ` | ` |
4:4 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2401 | 5 1 3 | ` | ` |
1:12` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `4096 | 5 1 3 | ` | ` |
2:9 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 19683 | 5 1 3 | ` | ` |
1:18` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `262144 | 5 1 3 |12 | ` |
----------------+---------------------------+-------+---+---+---
10:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `29 | 5 1 4 | ` | ` |
13:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `41 | 5 1 4 | ` | ` |
14:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `43 | 5 1 4 | ` | ` |
23:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `83 | 5 1 4 | ` | ` |
25:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `97 | 5 1 4 | ` | ` |
27:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 103 | 5 1 4 | ` | ` |
5:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 121 | 5 1 4 | ` | ` |
49:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 227 | 5 1 4 | ` | ` |
2:5 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 243 | 5 1 4 | ` | ` |
7:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 289 | 5 1 4 | ` | ` |
64:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 311 | 5 1 4 | ` | ` |
8:2 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 361 | 5 1 4 | ` | ` |
81:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 419 | 5 1 4 | ` | ` |
1:10` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1024 | 5 1 4 | ` | ` |
2:7 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2187 | 5 1 4 | ` | ` |
16:2` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2809 | 5 1 4 | ` | ` |
512:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `3671 | 5 1 4 | ` | ` |
2:8 ` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `6561 | 5 1 4 | ` | ` |
1:13` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `8192 | 5 1 4 | ` | ` |
1:14` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 16384 | 5 1 4 | ` | ` |
1:23` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` 8388608 | 5 1 4 | ` | ` |
1:25` ` ` ` ` ` | ` ` ` ` ` ` ` ` `33554432 | 5 1 4 | ` | ` |
2:16` ` ` ` ` ` | ` ` ` ` ` ` ` ` `43046721 | 5 1 4 | ` | ` |
1:27` ` ` ` ` ` | ` ` ` ` ` ` ` ` 134217728 | 5 1 4 | ` | ` |
1:49` ` ` ` ` ` | ` ` ` ` ` 562949953421312 | 5 1 4 | ` | ` |
1:64` ` ` ` ` ` | ` ` `18446744073709551616 | 5 1 4 | ` | ` |
1:81` ` ` ` ` ` | 2417851639229258349412352 | 5 1 4 | ` | ` |
1:512 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^512 | 5 1 4 |28 | ` |
----------------+---------------------------+-------+---+---+---
11:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `31 | 5 1 5 | ` | ` |
17:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `59 | 5 1 5 | ` | ` |
19:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `67 | 5 1 5 | ` | ` |
32:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 131 | 5 1 5 | ` | ` |
53:1` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 241 | 5 1 5 | ` | ` |
128:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 719 | 5 1 5 | ` | ` |
256:1 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `1619 | 5 1 5 | ` | ` |
1:11` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` `2048 | 5 1 5 | ` | ` |
1:17` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `131072 | 5 1 5 | ` | ` |
1:19` ` ` ` ` ` | ` ` ` ` ` ` ` ` ` `524288 | 5 1 5 | ` | ` |
65536:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` `821641 | 5 1 5 | ` | ` |
1:32` ` ` ` ` ` | ` ` ` ` ` ` ` `4294967296 | 5 1 5 | ` | ` |
1:53` ` ` ` ` ` | ` ` ` ` `9007199254740992 | 5 1 5 | ` | ` |
1:128 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^128 | 5 1 5 | ` | ` |
1:256 ` ` ` ` ` | ` ` ` ` ` ` ` ` ` ` 2^256 | 5 1 5 | ` | ` |
1:65536 ` ` ` ` | ` ` ` ` ` ` ` ` ` 2^65536 | 5 1 5 |16 |56 |
----------------+---------------------------+-------+---+---+---
1:2 2:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `36 | 5 2 2 | 1 | ` |
----------------+---------------------------+-------+---+---+---
2:1 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `15 | 5 2 3 | ` | ` |
1:2 3:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `20 | 5 2 3 | ` | ` |
2:1 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `21 | 5 2 3 | ` | ` |
1:3 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `24 | 5 2 3 | ` | ` |
1:1 6:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `26 | 5 2 3 | ` | ` |
1:2 4:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `28 | 5 2 3 | ` | ` |
1:1 9:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `46 | 5 2 3 | ` | ` |
1:4 2:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `48 | 5 2 3 | ` | ` |
1:1 3:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `50 | 5 2 3 | ` | ` |
1:1 2:3 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `54 | 5 2 3 | ` | ` |
1:1 4:2 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `98 | 5 2 3 | ` | ` |
1:1 2:4 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 162 | 5 2 3 |12 | ` |
----------------+---------------------------+-------+---+---+---
1:1 5:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `22 | 5 2 4 | ` | ` |
1:1 7:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `34 | 5 2 4 | ` | ` |
1:1 8:1 ` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` `38 | 5 2 4 | ` | ` |
1:1 16:1` ` ` ` | ` ` ` ` ` ` ` ` ` ` ` 106 | 5 2 4 | 4 |17 |73
================================================================
a = this sequence
g = rote weight in gammas = A062537
w = rote wayage in gammas = A001221
h = rote height in gammas = A109301
r = number in (g,h,w) set = A112481
s = count in (g, w) class = A111797
t = count in weight class = A061396
		

Crossrefs

A112481 Tetrahedron T(g, w, h) = number of rotes of weight g, wayage w, height h.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 8, 8, 2, 2, 12, 28, 16, 1, 12, 4
Offset: 1

Views

Author

Jon Awbrey, Sep 27 2005

Keywords

Comments

T(g, w, h) = |{m : A062537(m) = g, A001221(m) = w, A109301(m) = h}|.
This is the column that is labeled "r" in the tabulation of A112480.
a(n) is a permutation of the elements in A112096.
g = h > 0 implies w = 1 and T(j, 1, j) = 2^(j-1) = A000079(j-1).

Examples

			Table T(g, w, h), omitting empty cells, starts out as follows:
--------+-------------------------------------------------------
g\(w,h) | (0,0) (1,1) (1,2) ` ` ` (1,3) ` ` ` (1,4) ` ` ` (1,5)
` ` ` ` | ` ` ` ` ` ` ` ` ` (2,2) ` ` ` (2,3) ` ` ` (2,4) ` ` `
========+=======================================================
0 ` ` ` | ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
1 ` ` ` | ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
2 ` ` ` | ` ` ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
3 ` ` ` | ` ` ` ` ` ` ` 1 ` ` ` ` ` 4 ` ` ` ` ` ` ` ` ` ` ` ` `
3 ` ` ` | ` ` ` ` ` ` ` ` ` ` 1 ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` ` 8 ` ` ` ` ` 8 ` ` ` ` ` ` `
4 ` ` ` | ` ` ` ` ` ` ` ` ` ` 2 ` ` ` ` ` 2 ` ` ` ` ` ` ` ` ` `
--------+-------------------------------------------------------
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` ` ` `12 ` ` ` ` `28 ` ` ` ` `16 `
5 ` ` ` | ` ` ` ` ` ` ` ` ` ` 1 ` ` ` ` `12 ` ` ` ` ` 4 ` ` ` `
--------+-------------------------------------------------------
Row sums = A111797. Horizontal section sums = A061396.
		

Crossrefs

Showing 1-5 of 5 results.