cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112143 McKay-Thompson series of class 8D for the Monster group.

Original entry on oeis.org

1, -4, 2, 8, -1, -20, -2, 40, 3, -72, 2, 128, -4, -220, -4, 360, 5, -576, 8, 904, -8, -1384, -10, 2088, 11, -3108, 12, 4552, -15, -6592, -18, 9448, 22, -13392, 26, 18816, -29, -26216, -34, 36224, 38, -49700, 42, 67728, -51, -91688, -56, 123392, 66, -165128, 78, 219784, -85, -291072
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Comments

The convolution square of this sequence is A007248, except for the constant term: T8D(q)^2 = T4C(q^2) - 8. - G. A. Edgar, Apr 02 2017

Examples

			T8D = 1/q -4*q +2*q^3 +8*q^5 -q^7 -20*q^9 -2*q^11 +40*q^13 +...
		

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q^(1/2)*(eta[q]/eta[q^4])^4, {q, 0, 50}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, May 10 2018 *)
  • PARI
    q='q+O('q^50); Vec((eta(q)/eta(q^4))^4) \\ G. C. Greubel, May 10 2018

Formula

Expansion of q^(1/2)*(eta(q) / eta(q^4))^4 in powers of q. - G. A. Edgar, Apr 02 2017
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A046897(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 28 2017