A112160 McKay-Thompson series of class 24E for the Monster group.
1, 4, 6, 8, 17, 28, 38, 56, 84, 124, 172, 232, 325, 448, 594, 784, 1049, 1388, 1796, 2320, 3005, 3864, 4912, 6216, 7877, 9940, 12430, 15488, 19309, 23972, 29580, 36408, 44766, 54876, 66978, 81536, 99150, 120272, 145374, 175344, 211242
Offset: 0
Keywords
Examples
T24E = 1/q + 4*q^5 + 6*q^11 + 8*q^17 + 17*q^23 + 28*q^29 + 38*q^35 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
- Index entries for McKay-Thompson series for Monster simple group
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *) eta[q_] := q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(1/6)*(eta[q^2]^2/(eta[q]*eta[q^4]))^4, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 25 2018 *)
-
PARI
q='q+O('q^50); A = (eta(q^2)^2/(eta(q)*eta(q^4)))^4; Vec(A) \\ G. C. Greubel, Jul 01 2018
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2 * 6^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
Expansion of q^(1/6)*(eta(q^2)^2/(eta(q)*eta(q^4)))^4 in powers of q. - G. C. Greubel, Jan 25 2018
G.f.: exp(4*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018