cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A112160 McKay-Thompson series of class 24E for the Monster group.

Original entry on oeis.org

1, 4, 6, 8, 17, 28, 38, 56, 84, 124, 172, 232, 325, 448, 594, 784, 1049, 1388, 1796, 2320, 3005, 3864, 4912, 6216, 7877, 9940, 12430, 15488, 19309, 23972, 29580, 36408, 44766, 54876, 66978, 81536, 99150, 120272, 145374, 175344, 211242
Offset: 0

Views

Author

Michael Somos, Aug 28 2005

Keywords

Examples

			T24E = 1/q + 4*q^5 + 6*q^11 + 8*q^17 + 17*q^23 + 28*q^29 + 38*q^35 + ...
		

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
    eta[q_] := q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[q^(1/6)*(eta[q^2]^2/(eta[q]*eta[q^4]))^4, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 25 2018 *)
  • PARI
    q='q+O('q^50); A = (eta(q^2)^2/(eta(q)*eta(q^4)))^4; Vec(A) \\ G. C. Greubel, Jul 01 2018

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) / (2 * 6^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
Expansion of q^(1/6)*(eta(q^2)^2/(eta(q)*eta(q^4)))^4 in powers of q. - G. C. Greubel, Jan 25 2018
G.f.: exp(4*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018