cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A112328 a(n) = (n+1)*binomial(2n+2,n+1)-3*4^n+binomial(2n,n).

Original entry on oeis.org

2, 18, 108, 562, 2724, 12660, 57240, 253842, 1109748, 4798780, 20572392, 87580308, 370706408, 1561573032, 6551178288, 27387484242, 114146434068, 474476717292, 1967642119368, 8142727008732, 33634295542968, 138696447565272, 571069686589008, 2348087834494932
Offset: 1

Views

Author

Emeric Deutsch, Sep 04 2005

Keywords

Comments

Row sums of A112327.

Crossrefs

Cf. A112327.

Programs

  • Magma
    [(n+1)*Binomial(2*n+2,n+1)-3*4^n+Binomial(2*n,n):n in [1..22]]; // Marius A. Burtea, Sep 20 2019
  • Maple
    a:=n->(n+1)*binomial(2*n+2,n+1)-3*4^n+binomial(2*n,n): seq(a(n),n=1..25);
  • Mathematica
    a[n_]:=(n+1)*Binomial[2n+2,n+1]-3*4^n+Binomial[2n,n]; Array[a,22] (* Stefano Spezia, Sep 20 2019 *)
  • PARI
    a(n) = (n+1)*binomial(2*n+2,n+1)-3*4^n+binomial(2*n,n); \\ Michel Marcus, Sep 20 2019
    

Formula

G.f.: 4*z*(2-sqrt(1-4*z))/((1-4*z)^(3/2)*(1+sqrt(1-4*z))).
32*(2*n^2 - 9*n + 10)*a(n - 3) - 8*(2*n^2 - 14*n + 15)*a(n - 2) - 2*(2*n^2 + 3*n - 5)*a(n - 1) + n*(n - 1)*a(n) = 0. - Robert Israel, Sep 19 2019
Showing 1-1 of 1 results.